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ABSTRACT 

Scott, Amber Lynne (Ph.D., Molecular, Cellular, and Developmental Biology) 

Pathways of Adaptation: A large-scale expression and genotypic analysis of the 

influence of polyploidy on the evolution of yeast grown in a sub-optimal carbon source. 

Dissertation directed by Professor Robin Dowell. 

 

Polyploidy, or having more than 2 full sets of chromosomes, has occurred in the 

evolution of many fungi, plant, and animal species and is thought to contribute to 

speciation. Despite the important role of polyploidy in evolution, little is known about 

how polyploidy contributes to adaptation and speciation. We previously showed that 

tetraploid yeast adapted significantly faster to growth under carbon stress compared to 

the haploid and diploid yeast, yet it was not clear what mechanisms drove the increase 

in the rate of evolution in the tetraploid strains. To answer this, I assessed the different 

pathways of adaption that the haploid, diploid, and tetraploid yeast strains took to adapt 

to growth in raffinose medium. I examined the molecular mechanisms of adaptation 

utilized by the strains through whole genome sequencing and RNA expression analysis 

of over 100 evolved clones. The evolved clones gained adaptive mutations in a narrow 

set of genes involved in glucose sensing and uptake, however the higher ploidy strains 

gained significantly different types of mutations than haploid strains. Additionally, I 

demonstrate that a gene expression signature of just 5 genes can accurately predict the 

gene that carries an adaptive mutation in the evolved clone. While many of the adaptive 

mutations occur in genes that encode proteins with known roles in glucose sensing and 

uptake, I also discover mutations in genes with no canonical role in carbon utilization 
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(IPT1 and MOT3) as well as identify novel dominant mutations in glucose responsive 

regulators thought to only accumulate recessive mutations in carbon limited 

environments (MTH1 and RGT1). I conclude that polyploid cells explore more genotypic 

and phenotypic space than lower ploidy cells. This is evidenced by a greater spectrum 

of beneficial mutations, including novel dominant alleles, copy number variation, and 

whole chromosome aneuploidy.  



 v 

ACKNOWLEDGEMENTS 

 I would like to thank my thesis advisor Robin Dowell for her support and 

guidance through my graduate career. She is a dedicated mentor, a terrific role model, 

and a fierce advocate for women. I would like to thank all members of the Dowell lab 

past and present for helping me realize my talents as a molecular biologist as well as 

computational biologist. When I entered graduate school, I was unaware of the world of 

computational biology or that my skills and education were well suited to it. In particular, 

I would like to thank David Knox for teaching me python, Phillip Richmond for 

introducing me to bioinformatics tools, and Joey Azofeifa for continuing my 

computational education. I also want to thank fellow MCDB graduate students Tim Read 

and Jess Vera for all the help they gave me over the years. Mary Allen has been a great 

mentor and an inspiring scientist to work with over the years; her enthusiasm for 

science is contagious. This project would not have been possible without my 

collaborator, Anna Selmecki. She performed the initial experiments on which my thesis 

is based. Beyond that, she has been a friend, mentor, and enthusiastic cheerleader.  

 I would like to thank my thesis committee: Dr. Tom Blumenthal, Dr. Greg 

Odorizzi, Dr. Ken Krauter, and Dr. Mark Johnston. They provided great advice and 

supported me during my graduate career.  In particular, I would like to thank Greg 

Odorizzi for introducing me to the wonder world of yeast during my rotation in his lab; he 

has continued to provide me with plasmids, strains, and advice in yeast biology 

throughout graduate school. I would also like to the Mark Johnston for his helpful advice 

about the nature of the mutations we recovered in our study as well as providing the 

tools to sequence a larger number of evolved clones and characterize the particular 



 vi 

mutants. Ken Krauter is a fierce advocate for graduate students and my graduate career 

would not have been the same without his guidance. Lastly, I would like to thank Tom 

Blumenthal for asking me the tough questions and always motivating me to work 

harder, better, and smarter for science. 

 I would like to thank the MCDB and BioFrontiers faculty and staff for their help 

over the years. Additionally, I would like to acknowledge the CU-Boulder and CU-

Denver High-Throughput Sequencing Cores as well as the BioFrontiers Computing 

Core at the University of Colorado, Boulder for providing high performance computing 

resources (NIH 1S10OD012300) supported by BioFrontiers IT. This dissertation would 

not have been possible without funding by the Creative, Training in Molecular Biology 

NIH training grant (T32 GM007135), Blumenthal Fellowship, and Linda Crnic Institute 

graduate student fellowship. This research was supported by Creighton University, 

LB692-Nebraska Tobacco Settlement Biomedical Research Development New Initiative 

Grant, and NSF Career award (NSF 1350915). 

  Finally, I am extremely grateful to my friends and family without which the trials 

of graduate school would not have been possible. My fellow graduate students have 

provided me the constant support, steadfast friendship and a much-needed laugh at 

times. In particular, I would like to acknowledge Christa Trexler and Brittany Demmitt 

who have been my scientific sisters and my cheerleaders throughout graduate school. I 

would like to thank my family for years of encouragement and love. I especially want to 

thank my parents, Toni and Doug Sorenson, for motivating me to constantly achieve my 

goals and showing me that I am worthy of all my dreams. Lastly, I want to thank my 



 vii 

husband, David Scott, for his unwavering love and reassurance, this dissertation would 

not have been possible without his steady hand to support me.   



 viii 

TABLE OF CONTENTS  
 

1	
   Introduction ............................................................................................................... 1	
  

1.1	
   Scope of Thesis Research ........................................................................ 1	
  

1.2	
   The History of Experimental Evolution ...................................................... 1	
  

1.3	
   Experimental Microbial Evolution .............................................................. 2	
  

1.4	
   The Significance of Polyploidy in Evolution ............................................... 5	
  

1.5	
   Polyploidy and Disease ............................................................................. 9	
  

1.6	
   The Functional Effects of Polyploidy ......................................................... 9	
  

1.7	
   Studies of Ploidy Level in Experimental Evolution .................................. 11	
  

1.8	
   Glucose Uptake and Metabolism in Yeast .............................................. 14	
  

1.9	
   Polyploidy Can Drive Rapid Adaptation in Yeast .................................... 17	
  

2	
   Mutational Spectrum Varies By Ploidy Level .......................................................... 20	
  

2.1	
   Introduction .............................................................................................. 20	
  

2.2	
   Results and Discussion ........................................................................... 22	
  

2.3	
   Materials and Methods ............................................................................ 34	
  

2.4	
   Conclusions ............................................................................................. 42	
  

3	
   Pathways of Adaptation .......................................................................................... 44	
  

3.1	
   Introduction .............................................................................................. 44	
  

3.2	
   Results and Discussion ........................................................................... 45	
  

3.3	
   Materials and Methods ............................................................................ 68	
  

3.4	
   Conclusions ............................................................................................. 73	
  

4	
   Characterization of Adaptive Mutations .................................................................. 76	
  

4.1	
   Introduction .............................................................................................. 76	
  



 ix 

4.2	
   Results and Discussion ........................................................................... 77	
  

4.3	
   Materials and Methods .......................................................................... 100	
  

4.4	
   Conclusions ........................................................................................... 103	
  

5	
   Conclusions and Future Directions ....................................................................... 105	
  

5.1	
   Summary ............................................................................................... 105	
  

5.2	
   Major Scientific Contributions ................................................................ 107	
  

5.3	
   Future Directions ................................................................................... 108	
  

6	
   The Impact of Aneuploidy on Transcriptional Regulators ..................................... 115	
  

6.1	
   Introduction ............................................................................................ 115	
  

6.2	
   Results and Discussion ......................................................................... 120	
  

6.3	
   Methods ................................................................................................. 133	
  

6.4	
   Conclusions ........................................................................................... 139	
  

7	
   References ............................................................................................................ 141	
  

8	
   Additional Methods ................................................................................................ 169	
  

8.1	
   Haploid, diploid, and tetraploid ancestral strain construction ................ 169	
  

8.2	
   Plasmid Construction ............................................................................ 171	
  

8.3	
   Experimental evolution study ................................................................ 172	
  

9	
   Mutations Identified in the Evolved Clones by WGS ............................................. 176	
  

10	
   Chromosome Copy Number ................................................................................. 181	
  

11	
   Mutations by Type ................................................................................................. 184	
  

12	
   Differential Expression Analysis ............................................................................ 187	
  

13	
   Gene Ontology Enrichment Analysis .................................................................... 198	
  

14	
   Primers Used in These Studies ............................................................................. 205	
  



 x 

15	
   Strains Used in These Studies .............................................................................. 215	
  

  



 xi 

TABLE OF FIGURES 
 

Figure 1-1 Methods of experimental evolution ................................................................. 3	
  

Figure 1-2 Paleopolyploidy in eukaryotes ........................................................................ 6	
  

Figure 1-3 Raffinose metabolism in yeast ...................................................................... 16	
  

Figure 1-4 Rapid spread of beneficial mutations in tetraploid yeast. .............................. 19	
  

Figure 2-1 Graphical summary of the design of the experimental evolution study. ........ 21	
  

Figure 2-2 4Ne clones are highly aneuploid after 250 generations in raffinose. ............ 22	
  

Figure 2-3 Chromosome copy number in evolved clones. ............................................. 24	
  

Figure 2-4 Chromosome aneuploidy in early and late generations ................................ 25	
  

Figure 2-5 Pairwise patterns of chromosome aneuploidy .............................................. 26	
  

Figure 2-6 Significant enrichment of chromosome XIII aneuploidy. ............................... 26	
  

Figure 2-7 The number and spectrum of mutations per evolved clone varies by the initial 

ploidy. ...................................................................................................................... 30	
  

Figure 2-8 The average number of each mutation type differs by ploidy in the evolved 

clones. ..................................................................................................................... 33	
  

Figure 3-1 Comparative gene expression between the 2N and 4N ancestor. ................ 47	
  

Figure 3-2 ESR enrichment in the tetraploid ancestral strain. ........................................ 48	
  

Figure 3-3 Increase in environmental stress response in 4N ancestral strain. ............... 50	
  

Figure 3-4 mRNA expression profile in the evolved clones ............................................ 52	
  

Figure 3-5 Evolved clones differentially regulate phosphate ion transport. .................... 53	
  

Figure 3-6 Evolved clones differentially regulate carbohydrate transport. ..................... 55	
  

Figure 3-7 Ancestral ploidy does not alter the expression of glucose responsive genes 

in various carbon sources. ...................................................................................... 56	
  



 xii 

Figure 3-8 Expression of carbohydrate metabolism genes cluster evolved clones by 

adaptive mutation. ................................................................................................... 60	
  

Figure 3-9 Within group variance is minimized at k=5. ................................................... 61	
  

Figure 3-10 The spectrum of adaptive mutations in the evolved clones differs with 

increasing ploidy. .................................................................................................... 65	
  

Figure 3-11 Linear discriminant analysis separates evolved clones into distinct 

populations by adaptive mutation. ........................................................................... 67	
  

Figure 4-1 Evolved clones exhibit increased fitness in raffinose media. ........................ 79	
  

Figure 4-2 Mutations in SNF3 result in constitutive activation of glucose responsive 

genes. ..................................................................................................................... 81	
  

Figure 4-3 Dominant mutations in the glucose sensors, Snf3 and Rgt2, were found in 

evolved clones derived from each ploidy. ............................................................... 82	
  

Figure 4-4 Mutations in SNF3 provide a raffinose specific fitness benefit. ..................... 84	
  

Figure 4-5 SNF3 mutant copy number impacts HXT expression. .................................. 85	
  

Figure 4-6 Dominant and recessive mutations have been recovered in MTH1 in 

glucose-limited growth conditions. .......................................................................... 89	
  

Figure 4-7 MTH1-C321F induces glucose independent expression of glucose 

responsive genes. ................................................................................................... 89	
  

Figure 4-8 Diagram of published mutations in RGT1. .................................................... 92	
  

Figure 4-9 rgt1Δ mutants exhibit poor growth on raffinose media. ................................. 93	
  

Figure 4-10 RGT1-S509stop induces glucose independent expression of HXT2 and 

HXT4. ...................................................................................................................... 93	
  



 xiii 

Figure 4-11 Evolved clones with amplification of the HXT6/7 region gain fewer 

mutations and remain primarily tetraploid. .............................................................. 95	
  

Figure 4-12 Chromosome XIII aneuploidy confers a raffinose specific benefit in 

tetraploid yeast. ....................................................................................................... 99	
  

Figure 5-1 Graphical summary of pathways of adaptation for haploid, diploid, and 

tetraploid yeast to growth in raffinose media. ........................................................ 105	
  

Figure 5-2 Ploidy level does not impact the environmental stress response to growth in 

raffinose media ...................................................................................................... 113	
  

Figure 6-1 Aneuploidy increases DNA, RNA, and protein levels on altered chromosome.

 .............................................................................................................................. 117	
  

Figure 6-2 Graphical hypothesis of the impact of transcription factor copy number on 

genome-wide binding profile. ................................................................................ 119	
  

Figure 6-3 Pedigree for the lymphoblastoid cell lines used in this study. ..................... 119	
  

Figure 6-4 Expression of HSA21 encoded transcription factors in familial derived 

lymphoblastoid cell lines. ...................................................................................... 121	
  

Figure 6-5 Chromosome copy number in ChIP-seq data ............................................. 123	
  

Figure 6-6 GABPA unique peaks in familial derived LCLs. .......................................... 123	
  

Figure 6-7 GABPA peaks in each individual with coverage above background. .......... 125	
  

Figure 6-8 Differential GABPA peak occupancy. ......................................................... 125	
  

Figure 6-9 GABPA protein expression is not altered in T21 cells. ............................... 127	
  

Figure 6-10 The majority of H3K4me3 peaks are shared between individuals. ........... 128	
  

Figure 6-11 Differing patterns of H3K4me3 in the familial derived LCLs. .................... 129	
  

Figure 6-12 Increased GABPA eRNA expression in T21. ............................................ 131	
  



 xiv 

Figure 6-13 Increased HSA21 encoded TF eRNA expression T21 cells. .................... 132	
  

Figure 6-14 Diagram for calculating transcription over a ChIP-seq binding site .......... 138	
  

Figure 8-1 Schematic representation of the construction of isogenic haploid, diploid, and 

tetraploid strains used in this study. ...................................................................... 170	
  

Figure 12-1 Comparative expression scatterplots for 1Ne and 2Ne clones ................. 196	
  

Figure 12-2 Comparative expression scatter plots of the 4Ne clones .......................... 197	
  



 xv 

TABLE OF TABLES 
 

Table 1-1 Summary of experimental evolutions studies on ploidy level ......................... 12	
  

Table 3-1 Glucose responsive gene expression panel .................................................. 59	
  

Table 3-2 Identity of predicted adaptive mutations ......................................................... 63	
  

Table 4-1 MTH1 mutations recovered from experimentally evolved yeast populations 

under carbon stress. ............................................................................................... 88	
  

Table 4-2 RGT1 mutations recovered from experimentally evolved yeast populations 

under carbon stress. ............................................................................................... 92	
  

Table 6-1 Summary of GABPA Peak Calling ............................................................... 122	
  

Table 6-2 H3K4me3 peak calling summary. ................................................................ 128	
  

Table 6-3 ChIP sequencing summary .......................................................................... 136	
  

Table 9-1 Mutations identified in the evolved clones .................................................... 181	
  

Table 10-1 Chromosome copy number in evolved haploids ........................................ 181	
  

Table 10-2 Chromosome copy number in the evolved diploids ................................... 182	
  

Table 10-3 Chromosome copy number in evolved tetraploids ..................................... 183	
  

Table 11-1 Haploid mutations by type .......................................................................... 184	
  

Table 11-2 Diploid mutations by type ........................................................................... 185	
  

Table 11-3 Tetraploid mutations by type ...................................................................... 186	
  

Table 12-1 Significantly differentially expressed genes in evolved clones relative to the 

2N ancestor ........................................................................................................... 192	
  

Table 12-2 Significantly differentially expressed genes in the tetraploid ancestral strain 

relative to the 2N ancestral strain .......................................................................... 195	
  



 xvi 

Table 13-1 GO terms enriched in genes up-regulated in the evolved clones relative to 

the 2N ancestor ..................................................................................................... 200	
  

Table 13-2 GO terms enriched in the genes down-regulated in the evolved clones 

relative to the 2N ancestor .................................................................................... 202	
  

Table 13-3 GO terms enriched in the genes up-regulated in the 4N ancestor relative to 

the 2N ancestor ..................................................................................................... 203	
  

Table 13-4 GO terms enriched in the genes down-regulated in the 4N ancestor relative 

to the 2N ancestor ................................................................................................. 204	
  

Table 14-1 Yeast Primer List ........................................................................................ 208	
  

Table 14-2 MTH1-C321F strain construction primers .................................................. 209	
  

Table 14-3 RGT1-S509stop strain construction primers .............................................. 210	
  

Table 14-4 IPT1-C219W strains construction primers ................................................. 211	
  

Table 14-5 MOT3-K394stop strain construction primers .............................................. 212	
  

Table 14-6 Human primer list ....................................................................................... 214	
  

Table 15-1 Evolved strains used in these studies ........................................................ 217	
  

Table 15-2 Engineered strains used in these studies .................................................. 219	
  

  



 1 

1 INTRODUCTION 

1.1 Scope of Thesis Research 

The primary goal of this research is understand the identity and nature of 

adaptive mutations acquired by yeast of differing ploidy levels in evolution. This work is 

part of a larger collaboration with Anna Selmecki in David Pellman’s lab, in which we 

performed a large-scale experimental evolution study with isogenic haploid, diploid, and 

tetraploid yeast grown in glucose-limiting conditions. My thesis has focused on utilizing 

evolved strains arising from the evolution study to investigate the molecular 

mechanisms of adaptation in the haploids, diploids, and tetraploids. In this introduction I 

will describe the history of evolution experiments, the influence of polyploidy in evolution 

and disease, and the functional changes that arise from whole genome duplication 

(WGD). Furthermore, I summarize experimental evolution studies that have examined 

the impact of ploidy level in adaptation. Since we evolved the yeast in glucose-limiting 

conditions, I will also briefly describe glucose sensing and uptake in yeast. Finally, I will 

summarize the other results obtained from the experimental evolution study performed 

by Anna Selmecki, namely the impact of polyploidy on the rates of adaptation.  

1.2 The History of Experimental Evolution 

Since the days of Darwin, evolutionary biologists have primarily studied descent 

with modification by comparing closely related living species, such as Darwin’s finches, 

and inspection of the fossil record (Darwin 1859; Ridley 1983). A large wealth of 

knowledge was gained by these comparative studies throughout the greater part of the 

19th and 20th centuries, especially when combined with phylogeny and statistical 
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methods (Harvey and Purvis 1991). However, comparative studies rely on correlation 

and are therefore generally unable to test hypotheses directly (Garland and Adolph 

1994). As a result, scientists sought methods that would allow them to follow evolution 

over several generations, with controls and replication.  

Experimental evolution studies utilize rapidly proliferating organisms in controlled 

environments to study the mechanisms of evolution. The first recorded experimental 

evolution study was performed by Reverend W. H. Dallinger in 1880, in which he 

evolved bacteria over the course of 7 years to withstand heat up to 158°F (Hass 2000). 

The utility of microorganisms in the study of experimental evolution was again realized 

in the 1950s, when scientists observed that Escherichia coli under constant or periodic 

selection continually produced a fitter phenotype (Atwood et al. 1951; Ryan 1953). At 

the same time, Drosophila were used to study genetic drift and natural selection in the 

lab (Dobzhansky and Pavlovsky 1957; Futuyama 1970). Drosophila would remain the 

primary tool in experimental evolution studies throughout the latter half of the 20th 

century (Elena and Lenski 2003).  

1.3 Experimental Microbial Evolution 

Recent decades have seen a resurgence in experimental evolutionary studies 

using microorganisms such as bacteria, yeast, and even viruses. These organisms are 

ideal for experimental evolution studies because they have a short generation time, 

allowing researchers to study hundreds of generations of evolution in real time. In the 

1950s Francis J. Ryan noted that “in two years bacteria can grow through more 

generations than man has in the millions years of so of his evolutionary history” (Ryan 

1953). Microorganisms are small and easy to grow and maintain, allowing for 
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manipulation of environmental variables, such as salinity (Bell and Gonzalez 2009), 

nutrient availability, such as carbon and nitrogen (Boer et al. 2003), or chemical 

stressors, such as fungicide (Cowen et al. 2000). Importantly, microorganisms can be 

stored in suspended animation indefinitely allowing for the direct comparison of 

ancestors to evolved populations. Furthermore, microorganisms are ideal for testing the 

reproducibility of evolutionary outcomes from the same ancestor (Ferea et al. 1999; 

Cooper et al. 2003) as well as the effect of the organism’s genetic background on 

adaptability (Travisano et al. 1995).  

 

 

Figure 1-1 Methods of experimental evolution A graphical summary of the primary 
methods utilized in experimental evolution studies. A) Single-cell bottleneck 
experiments study the accumulation of mutations through repeated growth from a single 
colony on agar plates. B) Continuous culture experiments grow microorganisms in a 
constant environment and steady-state population size. Continuous culture experiments 
allow for adaptive evolution to a selective pressure, such as nutrient concentration. C) In 
serial transfer, also known as mass transfer, a portion of the population is transferred at 
regular intervals to fresh media. Similar to (B), serial transfer experiments study 
adaptive evolution under selective pressure. The figure is used with permission from 
Barrick and Lenski (2013). 

Population bottlenecks
Reductions in population size 
that typically also reduce 
genetic diversity. Bottlenecks 
can be deliberately imposed, 
such as in a mutation 
accumulation experiment. 
Cryptic bottlenecks also arise 
as a consequence of selective 
sweeps, especially in asexual 
populations, that drive out 
competing lineages and thus 
reduce genetic diversity.

Mutation rate
The rate at which new genetic 
mutations spontaneously occur 
during the replication and 
transmission of genetic 
information from parent to 
offspring.

some variants6 (FIG. 1a). Under these specific conditions, 
one can simply count the number of genetic changes that 
are present in independently evolved genomes after a 
known number of generations to estimate the sponta-
neous mutation rate (BOX 1). Recently, classic long-term 
mutation accumulation studies with model organisms 
— including Saccharomyces cerevisiae7, Arabidopsis 
thaliana8, Drosophila melanogaster9 and Caenorhabditis  
elegans10 — have been revisited using whole-genome 
sequencing to measure mutation rates. New mutation 
accumulation studies of microorganisms have also 
been carried out with the specific aim of estimating  
mutation rates11–13.

The overarching conclusion of these experiments is 
that spontaneous mutation rates are usually very low. 
Mutation accumulation experiments with bacteria11–13 
and single-celled eukaryotes7,13 typically find that the rate 
of single base mutations is of the order of 10−10–10−9 per 
base pair per replication. Given that the typical genome 
sizes in these organisms are of the order of 106–107 base 
pairs, these rates correspond to only one point mutation 
in every few hundred to several thousand cell divisions, 

which is in reasonable agreement with earlier esti-
mates for DNA-based microorganisms from reporter-
gene assays14. Rates of point mutations in multicellular 
eukaryotes8–10 are of the order of 0.05–1.0 per genera-
tion across the entire protein-coding portions of these 
genomes13,15, which is still fairly low given the much 
longer generation times and the multiple cell divisions 
in the germ line between generations in these organisms. 
Some types of mutations, such as insertions and dele-
tions of one or a few bases, typically occur at a lower rate 
than single base changes but vary more between species 
and with sequence context7. Other types of mutations, 
such as insertions of mobile DNA elements and large-
scale chromosomal rearrangements, are more difficult 
to identify from short-read DNA sequencing data and 
have not yet been systematically examined in mutation 
accumulation experiments.

Mutation rates can change over evolutionary time, 
so it is instructive to understand how both genetic and 
environmental factors affect these rates. In particular, 
hypermutator lineages that have increased mutation 
rates and highly biased mutational spectra may arise 

Figure 1 | Types of evolution experiments. There are three main ways that populations are propagated in evolution 
experiments, and they all lead to different types of genetic dynamics. The mechanics of how populations are maintained 
in each set-up are illustrated for microorganisms (top panels), and representative changes in population sizes over time 
are also shown for each procedure (bottom panels). Analogous procedures exist for multicellular organisms, although 
population sizes are generally much smaller. a | In mutation accumulation experiments, frequent and deliberate population 
bottlenecks through one or a few randomly chosen breeding individuals are accomplished by picking colonies of 
microorganisms that grow from single cells on agar plates. These bottlenecks purge genetic diversity and lead to the 
fixation of arbitrary mutations without respect to their effects on fitness. b | In experiments using continuous culture, 
populations are maintained in conditions that consist of a constant inflow of nutrients and an outflow of random 
individuals and waste in a chemostat, which leads to adaptive evolution and genetic diversity in populations that 
typically maintain a nearly constant size. c | In serial transfer experiments, a proportion of the population is periodically 
transferred to fresh media and allowed to regrow until the limiting nutrient is exhausted. Such batch growth also leads 
to adaptive evolution because ample genetic diversity is maintained through each transfer. Alternatively, transfers can 
be made before nutrient depletion, thereby allowing perpetual population growth. A second, cryptic type of population 
bottleneck occurs during adaptive evolution experiments (parts b and c) as a consequence of selective sweeps, 
especially in asexual populations, that drive out competing lineages and thereby reduce genetic diversity.
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There are three main techniques utilized to evolve microbes in the lab: single-cell 

bottlenecks, continuous culture, and serial transfer (Figure 1-1). Single-cell bottlenecks 

examine the accumulation of arbitrary mutations through repeated population restriction, 

by sequential growth of single colonies of microbes on agar plates, leading to the 

fixation of mutations with no fitness effect (Figure 1-1A). The single-cell bottleneck 

approach is useful for estimation of mutation rates, however successive bottlenecks 

lead to an overall decay in fitness over time (Barrick and Lenski 2013). Continuous 

culture and serial transfer experiments allow researchers to apply a selective pressure 

to the cultures in order to understand the effect of natural selection on populations. 

Continuous culture in a chemostat keeps the nutrient availability and population size 

constant over time through the in-flow of nutrients and out-flow of waste and excess 

individuals in the population (Figure 1-1B) (Barrick and Lenski 2013). Alternatively, in 

serial transfer experiments, a portion of the population is transferred to fresh media, 

favoring mutations that increase exponential growth following transfer while still 

maintaining genetic diversity (Figure 1-1C) (Barrick and Lenski 2013). In our study, we 

evolved isogenic haploid, diploid, and tetraploid yeast in glucose-limiting conditions by 

serial transfer.  

The genomics era has had a major influence on the renaissance of experimental 

microbial evolution. Whole genome sequencing of evolved clones has improved 

measurements of mutation rates and allowed researchers to determine the identity of 

adaptive mutations. Furthermore, deep sequencing of evolved populations, before and 

after evolution, has led to a greater understanding of population dynamics and genome 

evolution (Reviewed in Barrick and Lenski 2013). Recently, Levy et. al. tagged 
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~500,000 isogenic yeast with unique barcodes and tracked their individual lineages for 

~168 generations in carbon-limited conditions (Levy et al. 2015). This was the first study 

in which researchers observed population dynamics on a single-cell level. As 

sequencing technology improves and costs decrease, it is feasible that single-cell whole 

genome sequencing in evolving populations will further improve the resolution of 

evolutionary dynamics and the discovery of beneficial mutations.  

RNA sequencing and microarray have been used the measure global changes in 

genes expression to understand how strains and populations adapt to growth in 

different environments or under nutrient limitation. Expression analysis in evolved 

clones has shown evidence of major metabolic shifts that may be adaptive in nutrient-

limited conditions (Ferea et al. 1999; Gresham et al. 2008). Moreover, evolved clones 

from independent populations exhibited similar gene expression patterns, evidence of 

parallel evolution (Ferea et al. 1999; Cooper et al. 2003; Gresham et al. 2008). In my 

thesis work, I integrate both whole genome sequencing and expression analysis to 

understand the molecular mechanisms of adaptation in the haploid, diploid, and 

tetraploid clones after growth in glucose-limited conditions.  

1.4 The Significance of Polyploidy in Evolution 

Polyploidy, or having greater than two full complements of chromosomes, has 

occurred in plant, animal and fungi lineages throughout the course of evolution and 

continues to persist in some of these lineages today (Otto and Whitton 2000). With the 

advent of whole genome sequencing, has become possible to reconstruct the past on a 

genomic level to look for evidence of whole genome duplication events (WGD) that 

occurred during a species’ evolution (Van de Peer 2004). There is evidence to support  
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Figure 1-2 Paleopolyploidy in eukaryotes Paleopolyploidyzation events occurred in 
the evolution of plants (green), animals (blue), and fungi (yellow). Well-supported whole 
genome duplication events are indicated by a red dot. Yellow dots indicate speculated 
whole genome duplication events. Branch lengths are not to scale. Data compiled from 
(Wolfe 2001; Adams and Wendel 2005; Cui et al. 2006) by Peter Zhang (Wikipedia) and 
the figure is reproduced here under the creative commons license.  
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ancient polyploidization events in plants, animals and fungi (Figure 1-2)(Otto and 

Whitton 2000; Wolfe 2001; Adams and Wendel 2005; Cui et al. 2006). If polyploidy were 

an evolutionary dead-end, we would expect few species would result after the WGD 

event, however this is not what is observed (Figure 1-2). Instead, polyploidization 

events occur early in lineages, thus they are likely to contribute to evolutionary success 

(Otto 2007). 

The frequency of polyploidy arising in plants and animals is surprisingly high. 

Plants, the most common polyploids, produce non-reduced gametes at a rate of 0.5% 

per gamete and produce polyploid offspring at rates of 6.3% (Ramsey and Schemske 

1998). Additionally, 0.9% of chicken embryos are triploid or tetraploid and 5.3% of 

spontaneous human abortions are triploid or tetraploid (Bloom 1972; Creasy et al. 

1976). However, polyploidy is almost always fatal in birds and mammals (Otto and 

Whitton 2000). Polyploidy is also very common in fungi. Whole genome sequencing of 

132 clinical isolates of Saccharomyces cerevisiae identified that ~34% are triploid or 

tetraploid.  A study of wild yeast in “Evolution Canyon” found that 69% of strains isolated 

were triploid or tetraploid, compared to 31% that were diploid (Ezov et al. 2006; Zhu et 

al. 2016). The high frequency of polyploidy suggests it is an important source of 

genomic variation and is likely to have a role in evolution.  

A related major driving force in evolution is gene duplication, which is considered 

a primary determinant of increased organismal complexity (Ohno 1970; He and Zhang 

2005). However, gene duplication is relatively rare, while polyploidy and aneuploidy are 

much more common (Lynch and Conery 2000; Otto 2007). Thus, WGD events produce 

the raw material (i.e. large scale duplications) on which evolution can act to produce a 
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new gene function. Relaxed selection on duplicated genes allows for the evolution of 

sub-functionalization, such as the hexose transporters in yeast that have differing 

affinities for glucose, or neofunctionalization, such as the evolution of glucose sensors 

from glucose transporters in yeast (Force et al. 1999; Lynch and Force 2000; Sémon 

and Wolfe 2007a; Lin and Li 2011). In fact, WGD events in the evolution of Arabidopsis 

thaliana are responsible for >90% of the increase in transcription factors, signal 

transducers, and developmental genes in their genome (Maere et al. 2005). Despite the 

high probability of inactivation of duplicated genes, duplicated genes following WGD are 

preserved at a rate of 30 to 50% (Lynch and Conery 2000).  

Polyploidy may also contribute to evolution by increasing the rate of adaptation 

by doubling the target size for beneficial mutations (Adams and Hansche 1974; Otto 

2007; Gerstein and Otto 2009). In smaller populations the rate of generating mutations 

is limiting, therefore the increased target size of polyploid cells relative to haploids is 

predicted to increase the rate of adaptation (Orr and Otto 1994; Otto and Whitton 2000; 

Zeyl et al. 2003; Otto 2007). However, beneficial phenotypic changes may be 'masked' 

in higher ploidy cells depending on the degree of dominance of the mutations (Orr and 

Otto 1994; Otto and Whitton 2000; Anderson et al. 2004). Increased numbers of 

chromosome sets may also buffer the effects of deleterious mutations, but this is only a 

temporary advantage, as it leads to the accumulation of deleterious mutations in the 

genome with diminishing returns (Korona 1999; Otto and Whitton 2000; Thompson et al. 

2006). Thus, in certain environments WGD may provide temporary benefit long enough 

for evolution to act.  
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1.5 Polyploidy and Disease 

Polyploidy not only contributes to evolution, but is also an important factor in 

human disease. Polyploid cells are formed in the human body in a variety of 

pathological conditions (Storchova and Pellman 2004). For example, polyploid cells 

arise as a result of aging, hypertension, and wound healing (Oberringer et al. 1999; 

Hixon et al. 2000; Gorla et al. 2001). Tetraploidy is considered an intermediate on the 

road to tumorigenesis, particularly in the development of aneuploidy, an unequal 

number of chromosomes (Ganem et al. 2007). 37% of all cancers undergo a genome 

duplication event sometime during their progression (Zack et al. 2013). Additionally, in a 

mouse model of breast cancer, polyploid cells promote tumorigenesis, whereas diploid 

cells do not (Fujiwara et al. 2005). The prevalence of polyploidy in cancer and other 

human disease suggests that polyploidy may be beneficial under certain conditions, 

such as metabolic stress (Storchova and Pellman 2004). Polyploidy is also frequently 

identified in human fungal pathogens, including those that cause life-threatening 

infections like Cryptococcus neoformans, Candida albicans, and Saccharomyces 

cerevisiae (Clemons et al. 1997; Muller and McCusker 2009; Selmecki et al. 2010; 

Harrison et al. 2014; Zhu et al. 2016). Despite the importance of polyploidy in evolution 

and human disease, little is known about how increasing ploidy levels affect adaptation 

to a stressful environment on a molecular level. 

1.6 The Functional Effects of Polyploidy 

Polyploid cells exhibit unique features compared to haploid and diploid cells such 

as an increased cell size and, as a result, a decreased surface area to volume ratio 

(Galitski et al. 1999; Mable 2001; Cook and Tyers 2007; Lee et al. 2010). Furthermore, 
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in some environments these differences in cells size can affect growth rate and nutrient 

transport (Adams and Hansche 1974; Weiss et al. 1975; Mable 2001). Gene expression 

alterations have been reported in some polyploids, particularly polyploids formed by the 

hybridization of different species (known as allopolyploids) (Adams and Wendel 2005; 

Chen and Ni 2006).  However, since increasing ploidy levels maintains gene dosage 

balance, polyploids formed by the same species (autopolyploids) exhibit few gene 

expression changes (Birchler et al. 2001; Storchová et al. 2006; Wang et al. 2006). To 

fully understand the impact of ploidy level on gene expression, the Fink lab constructed 

isogenic haploid, diploid, triploid and tetraploid yeast strains, as well as isogenic cell 

size mutants. They conclude that the primary gene expression differences with 

increased ploidy are the result of cell size alterations, consistent with a deceased 

surface area to volume ratio (Galitski et al. 1999; Wu et al. 2010).  

Another major feature of polyploid cells is problems with mitosis and meiosis, and 

cells often undergo rapid genomic rearrangement following WGD (Wendel 2000; Adams 

and Wendel 2005; Comai 2005; Otto 2007). In particular, there is evidence of genomic 

instability following ancient genome duplication events (Sémon and Wolfe 2007b). 

Newly formed polyploids exhibit increased transposable element activity that results in 

chromosome restructuring (Wendel 2000). Polyploidy also leads to chromosomal 

instability, namely aneuploidy (Mayer and Aguilera 1990; Storchova and Pellman 2004).  

This chromosome instability may be beneficial in some conditions, as aneuploidy itself 

has been shown to be beneficial in certain environments (Selmecki et al. 2006; Rancati 

et al. 2008; Pavelka, Rancati, and Li 2010). On the other hand, aneuploidy is most often 

thought to be detrimental to fitness (Pavelka, Rancati, Zhu, et al. 2010; Oromendia et al. 
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2012; Sunshine et al. 2015) and polyploids often return to near diploid levels over time 

through chromosome loss (Gerstein et al. 2006). However, tetraploid yeast that were 

adapted in non-stress conditions (rich media at room temperature) for 1000 generations 

remained 4N and exhibited greater genome stability under stress than newly formed 

tetraploids, suggesting that polyploidy is only unstable in certain environments and once 

established can remain stable (Lu et al. 2016).  

1.7 Studies of Ploidy Level in Experimental Evolution 

Ploidy level changes, and in particular polyploidy, represent one of the most 

important means in which an organism can generate large-scale genotypic and 

phenotypic variation (King et al. 2012; Soltis et al. 2014). However, witnessing 

spontaneous polyploidization events and following their evolutionary trajectories is 

difficult in nature, but it is possible in laboratory-controlled experiments with single-

celled organisms. Many in vitro evolution studies have been performed with S. 

cerevisiae and Candida albicans, yet most of these focus on haploid and diploid cells 

(summarized Table 1-1).  

Theoretical models suggest that increased ploidy level increases the rate of 

adaptation (Stebbins 1940; Otto and Whitton 2000). However, the literature has 

conflicting evidence about the relative rate of adaption or the fixation of beneficial 

mutations in haploid and diploid S. cerevisiae. An early study that examined the rate of 

adaptation through the fixation of beneficial mutations in haploid and diploids grown in 

carbon-limited chemostats found that diploid populations fixed beneficial mutation at 

1.6x the rate of haploid populations (Paquin and Adams 1983). Yet, another study that 

examined the rate of adaptation of isogenic haploid and diploid yeast found that haploid   
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Ploidy 
Levels EE Conditions Ploidy Level Conclusions Citations 

1N, 2N Chemostat, low-glucose, 300 
generations, S. cerevisiae 

Diploids adapt/fix mutations 1.6x 
faster than haploids 

(Paquin and Adams 
1983) 

1N, 2N 

Serial transfer, glucose-limiting, 
30C, S. cerevisiae, 5000 
generations, large & small 
population size 

Haploids adapt faster in large 
populations, and diploid and 
haploids adapt at the same rate in 
small populations 

(Zeyl et al. 2003) 

1N, 2N Serial transfer, Fluconazole, 30C, 
400 generations, C. albicans 

Haploids adapted faster at high drug 
concentrations, but diploids fixed 
mutations faster at lower 
concentrations, depends on 
dominance  

(Anderson et al. 
2003; Anderson et al. 
2004) 

1N, 2N 

Serial transfer, Rich media, non-
fermentable, low-glucose, high 
salt, 350 generations, mutator vs 
non- mutator, S. cerevisiae 

Diploids mask deleterious mutations 
and this increases competitive 
fitness  

(Thompson et al. 
2006) 

1N, 2N, 
4N 

Serial transfer & mutation 
accumulation, YPD & NaCl, 30C, 
1800 generations, S. cerevisiae 

1N and 4N populations converge on 
diploidy, dependent on environment 
and initial ploidy, diploidization rarely 
occurred in mutation accumulation 

(Gerstein et al. 2006; 
Gerstein et al. 2008) 

1N, 2N 

Chemostat, 3 environments (low- 
glucose, sulphate, phosphate), 
S288c and CEN.PK, ~200 
generations, S. cerevisiae 

Diploids more likely to gain 
chromosome-scale CNVs 

(Gresham et al. 
2008) 

1N, 2N Chemostat, low-glucose, 450 
generations, S. cerevisiae 

CNV is first mutation in 2N, CNVs 
are over-dominant 

(Kao and Sherlock 
2008; Wenger et al. 
2011; Kvitek and 
Sherlock 2013; Sellis 
et al. 2016) 

1N, 2N 

Serial transfer, 6 environments 
(Caffeine, EtOH, HCL, KOH, NaCl, 
Naystatin), 187 generations, S. 
cerevisiae 

Haploids adapt faster in a range of 
environments, affected by level of 
dominance 

(Gerstein et al. 2011) 

1N, 2N, 
4N 

Turbidostat, EtOH, 200 
generations, S. cerevisiae 

Convergence on diploid state in all 
populations, high levels of 
aneuploidy, mutator phenotype, 
parallelism in mutations 

(Voordeckers et al. 
2015) 

2N, 4N Serial transfer, YPD, 23C, 1000 
generations, S. cerevisiae 

At 23C tetraploid evolved clones 
remain 4N, evolved greater stability 
at 30C, become "diploid like" in 
expression and phenotype 

(Lu et al. 2016) 

1N, 2N, 
4N, 3N+  

Serial transfer, 4 environments 
(Rich Media, Minimal Media, 
phosphorus-limited, nitrogen-
limited), 30C, 140 generations, 
Candida albicans 

Populations almost always 
converged on diploidy, confirming 
"ploidy drive"  

(Gerstein et al. 2017 
Feb) 

Table 1-1 Summary of experimental evolutions studies on ploidy level 
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populations adapted faster in the majority of conditions tested (Gerstein et al. 2011). 

These conflicting studies suggest that the extent of the difference in the rate of 

adaptation between haploids and diploids depends on the specific condition and the 

level of dominance of the mutations. In support of this, studies that experimentally 

evolved C. albicans in differing concentrations of the antifungal drug Fluconazole 

demonstrated that haploid cells adapted faster in an environment where recessive 

mutations were favored, and diploid cells did better in an environment that required 

dominant mutations. (Anderson et al. 2003; Anderson et al. 2004). Population size has 

also been shown to affect the rate of adaption, haploid cells evolved faster than diploid 

cells in large populations, but when the population size was reduced there was no 

advantage to haploidy (Zeyl et al. 2003).  

The only experimental evolution studies to directly compare haploid, diploid, and 

tetraploid yeast focused on “ploidy drive”, or the pressure to return to the natural ploidy 

level. Haploid and tetraploid S. cerevisiae strains grown in YPD, high salt, and ethanol 

converge on 2N, while diploids remain primarily 2N (Gerstein et al. 2006; Gerstein et al. 

2008; Voordeckers et al. 2015). Similarly, laboratory and clinical isolates of C. albicans 

also demonstrated a strong “ploidy drive” (Gerstein et al. 2017).  In all cases, the rate of 

convergence was dependent on the environment and initial ploidy level. However, the 

above studies were all performed at 30°C, which has been shown to cause stress in 

tetraploid yeast (Storchová et al. 2006). In a recent study, tetraploid yeast grown in rich 

media for 1000 generations at 23°C remained largely 4N (Lu et al. 2016). The evolved 

4N clones showed a gene expression signature similar to ancestral diploids and have 
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greater genome stability than the ancestral tetraploids when grown at 30°C, suggesting 

that tetraploid cells can evolve to maintain genome stability in the right conditions.  

To better understand the molecular mechanisms of evolution, particularly after 

whole genome duplication, more studies are needed that directly compare the rate of 

adaptation as well as the genetic and phenotype changes in haploid, diploid, and 

polyploid cells during evolution. Dr. Anna Selmecki, we performed in vitro evolution of 

isogenic haploid, diploid, and tetraploid yeast in raffinose media, a carbon-limited 

environment. We further monitored the rate of adaptation in hundreds of parallel 

populations and quantified the genomic and phenotypic changes following adaptation.   

1.8 Glucose Uptake and Metabolism in Yeast 

For these studies we utilized raffinose as the sole carbon source in the growth 

medium. Raffinose is hydrolyzed extracellularly into fructose and melibiose; the fructose 

is then metabolized in yeast by the glucose pathway (Lagunas 1993). Melibiose cannot 

be further metabolized in our lab strain because it lacks key melibiase enzymes 

(Naumov et al. 1990). Thus, raffinose medium is a surrogate for low-glucose growth 

medium. However, unlike low-glucose media in which the glucose is quickly depleted 

from the environment, raffinose is metabolized extracellularly, thereby serving as a 

constant source of low carbon in the environment (Ozcan et al. 1996).  

A great deal is known about the glucose pathway and extensively reviewed in 

(Johnston 1999; Ozcan and Johnston 1999; Rolland et al. 2002; Gancedo 2008); here 

we provide a brief overview. There are three key steps that lead to glucose/fructose 

uptake in yeast: the glucose sensors, signal transducers, and hexose transporters 

(Figure 1-3). The glucose sensors, Snf3p and Rgt2p, signal to downstream regulators of 



 15 

glucose responsive genes in the presence of low or high extracellular glucose 

concentrations, respectively (Ozcan et al. 1996; Sabina and Johnston 2009). Mth1p 

binds Rgt1p and promotes Rgt1p mediated repression of the glucose responsive genes 

(Flick et al. 2003; Moriya and Johnston 2004). Low levels of extracellular glucose 

activate a signaling cascade, through Snf3p, that results in the degradation of Mth1p 

(Ozcan et al. 1996; Flick et al. 2003). Loss of Mth1p relieves the Rgt1p repression of 

glucose responsive genes, such as the hexose transporters and the invertase, SUC2, 

which extracellularly hydrolyzes raffinose into melibiose and fructose (Figure 1-3) 

(Carlson and Botstein 1982; Ozcan et al. 1996; Polish et al. 2005). 

There are 17 annotated hexose transporters in yeast, however, only Hxt1p-Hxt7p 

have been shown to transport glucose into the cell (Figure 1-3) (H Liang and Gaber 

1996; Boles and Hollenberg 1997; Lin and Li 2011).  The transporters differ in their 

affinity for glucose and their regulation. Hxt1p has the lowest affinity for glucose and is 

upregulated when there are high levels of glucose outside the cell; on the other hand 

Hxt2p and Hxt4p have high and moderate affinities for glucose, respectively, and are 

induced by low concentrations of glucose in the media (Kruckeberg and Bisson 1990; 

Theodoris et al. 1994; Boles and Hollenberg 1997; Reifenberger et al. 1997). Hxt3p has 

intermediate affinity for glucose and is upregulated by both low and high levels of 

extracellular glucose (Boles and Hollenberg 1997; Reifenberger et al. 1997). Hxt6p and 

Hxt7p have the highest affinity for glucose and high levels of basal expression (Boles 

and Hollenberg 1997). HXT6 and HXT7 are also 99.7% identical and therefore 

indistinguishable when measured by qRT-PCR. Snf3 is required for induction of HXT2 

and HXT4, but not the induction of HXT6 and HXT7 (Hong Liang and Gaber 1996).  
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Several experimental evolution studies in yeast have been performed in glucose 

limiting environments (Paquin and Adams 1983; Brown et al. 1998; Ferea et al. 1999; 

Gresham et al. 2008; Kao and Sherlock 2008; Koschwanez et al. 2013; Kvitek and 

Sherlock 2013; Levy et al. 2015). However, these studies were performed in haploid or 

diploid populations. Thus, evolution of haploid, diploid and tetraploid populations in 

raffinose media is a natural extension of previous experimental evolution studies in 

carbon-limited environments. 

 

 

Figure 1-3 Raffinose metabolism in yeast Raffinose is extracellularly hydrolyzed into 
fructose and melibiose. Fructose can then be metabolized equivalently to glucose by 
the cell. Low levels of extracellular fructose activate signaling by the glucose sensor 
Snf3p, which leads to the degradation of Mth1p and phosphorylation of Rgt1p. 
Phosphorylation of Rgt1p blocks DNA binding of Rgt1p and results in the depression of 
glucose responsive genes.  
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1.9 Polyploidy Can Drive Rapid Adaptation in Yeast 

The experimental evolution on which my thesis is based was performed by Anna 

Selmecki in a collaboration between David Pellman’s and Robin Dowell’s labs. My 

primary role in the initial publication was the sequencing of over 120 clones derived 

from independent haploid, diploid, and tetraploid evolved populations, work I describe in 

detail in Chapter 0. Below I describe the other key findings from this study, as 

motivation for my thesis. This initial study is published in: 

Anna M. Selmecki, Yosef E. Maruvka, Phillip A. Richmond, Marie Guillet, Noam 

Shoresh, Amber L. Sorenson, Subhajyoti De, Roy Kishony, Franziska Michor, 

Robin Dowell & David Pellman. 2015. Polyploidy can drive rapid adaptation in 

yeast. Nature 519:349–352.  

 

 Polyploidy is proposed to alter the rate of evolutionary adaptation and may also 

affect adaptation independently of beneficial mutations through ploidy-specific changes 

in cell physiology. Anna Selmecki performed a large-scale in vitro evolution experiment 

to test directly whether polyploidy can accelerate evolutionary adaptation. Anna 

constructed isogenic haploid (1N), diploid (2N), and tetraploid (4N) yeast and performed 

experimental evolution by serial transfer for hundreds of independent populations 

(Figure 1-4A). Yeast were grown in synthetic complete media with raffinose as the sole 

source of carbon, a well studied stressor in yeast (Kruckeberg and Bisson 1990). To 

monitor the progress of adaptation, the evolution experiments were performed as 

competitions between equal numbers of cells of the same ploidy expressing cyan 

fluorescent protein (CFP) or yellow fluorescent protein (YFP) (Hegreness 2006; Kao 

and Sherlock 2008). Flow cytometry was performed daily to monitor the percentage of 
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YFP and CFP expressing cells in the population (Figure 1-4A). The acquisition and 

spread of beneficial mutations is visualized by divergence from a 50:50 ratio of CFP- 

and YFP-expressing cells (Figure 1-4B). The rate of adaptation was determined by 

measuring the change in fitness relative to the diploid ancestor over time. 

The evolution experiment demonstrated that, over 250 generations, the tetraploids 

adapted at a rate that was significantly faster than haploids or diploids (Figure 1-4C; t-

test, P<1x10-10). Additionally, mathematical modeling indicated that in a glucose-limited 

environment polyploidy increases the rate (Figure 1-4C) and fitness effects of the 

acquired mutations (Figure 1-4D). To further understand the molecular basis of 

adaptation and the role of ploidy level in adaptation to rapid growth in raffinose media, I 

performed whole genome sequencing and expression analysis in over 100 evolved 

clones (described in Chapter 2). I found increased genetic complexity in polyploid 

evolved clones relative to haploids and diploids, suggesting that in this relatively short 

evolutionary timescale polyploid cells explored more evolutionary innovations. 

Additionally, I focused on the gene expression patterns acquired during in vitro evolution 

(described in Chapter 3) to determine if polyploid cells have increased variation in gene 

expression and regulatory wiring (Osborn et al. 2003). Interestingly, gene expression 

patterns for all evolved clones cluster according to one key adaptive mutation that they 

carry, despite additional background mutations and underlying karyotype or ploidy level. 

I further characterize the key adaptive mutations gained in adaption to rapid growth in 

raffinose media (described in Chapter 4). Overall, this work suggests that polyploid cells 

can rapidly adapt to a novel environment due to an increased sampling of key adaptive 

mutations.  
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Figure 1-4 Rapid spread of beneficial mutations in tetraploid yeast. A) Schematic 
diagram of the evolution experiment. B) Flow cytometry analysis of isogenic haploid 
(black), diploid (blue), and tetraploid (red) populations during adaptation to raffinose 
medium. Each line is the percentage of YFP cells in an independent population of YFP 
and CFP cells. Data from haploids is black, from diploids is blue, and from tetraploids is 
red. C) The adaptation rate of the evolved clones relative to the diploid ancestor after 
250 generations. Data points are the average rate of adaptation (change in fitness 
between generation 250 and generation zero, divided by 250 generations) of two 
replicate fitness measurements for the evolved clones. Clones from replicate evolution 
experiments (A, B, and C) are indicated. The tetraploids acquired significantly more 
fitness in the same number of generations compared with the haploids and diploids (t-
test, P < 1x10-10). D) Estimates from the branching evolution model of the best-fit value 
of the selection coefficient and beneficial mutation rate of each ploidy experiment, and 
their error range, determined using a uniform distribution of acquired mutations. Error 
ranges were obtained by parametric bootstrap of 1,000 independent realizations. For 
detailed methods on the evolution experiments and modeling see Section 8.3. Figure 
and legend from (Selmecki et al. 2015). 
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Polyploidy is observed across the tree of life, yet its influence on
evolution remains incompletely understood1–4. Polyploidy, usually
whole-genome duplication, is proposed to alter the rate of evolu-
tionary adaptation. This could occur through complex effects on the
frequency or fitness of beneficial mutations2,5–7. For example, in
diverse cell types and organisms, immediately after a whole-genome
duplication, newly formed polyploids missegregate chromosomes
and undergo genetic instability8–13. The instability following whole-
genome duplications is thought to provide adaptive mutations in
microorganisms13,14 and can promote tumorigenesis in mammalian
cells11,15. Polyploidy may also affect adaptation independently of ben-
eficial mutations through ploidy-specific changes in cell physiology16.
Here we perform in vitro evolution experiments to test directly whether
polyploidy can accelerate evolutionary adaptation. Compared with
haploids and diploids, tetraploids undergo significantly faster adap-
tation. Mathematical modelling suggests that rapid adaptation of
tetraploids is driven by higher rates of beneficial mutations with

stronger fitness effects, which is supported by whole-genome sequenc-
ing and phenotypic analyses of evolved clones. Chromosome aneu-
ploidy, concerted chromosome loss, and point mutations all provide
large fitness gains. We identify several mutations whose beneficial
effects are manifest specifically in the tetraploid strains. Together,
these results provide direct quantitative evidence that in some envi-
ronments polyploidy can accelerate evolutionary adaptation.

To determine how polyploidy affects the rate of adaptation, we per-
formed hundreds of independent passaging experiments in a poor carbon-
source medium (raffinose, Fig. 1a), comparing isogenic haploid (1N),
diploid (2N), and tetraploid (4N) strains (Extended Data Fig. 1 and Ex-
tended Data Table 1). The evolution experiments were performed as
competitions between equal numbers of cells of the same ploidy express-
ing cyan fluorescent protein (CFP) or yellow fluorescent protein (YFP)17,18,
where the acquisition and spread of beneficial mutations is visualized by
divergence from a 50:50 ratio of CFP- and YFP-expressing cells (Fig. 1b).
The rate of adaptation was determined by measuring the change in
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Figure 1 | Rapid spread of beneficial mutations
in tetraploid yeast. a, Schematic diagram of the
evolution experiment. b, Flow cytometry analysis
of isogenic haploid (black), diploid (blue), and
tetraploid (red) populations during adaptation to
raffinose medium. Each line is the percentage of
YFP cells in an independent population of YFP
and CFP cells. Here and below, data from haploids
is black, from diploids is blue, and from tetraploids
is red. c, The adaptation rate of the evolved
clones relative to the diploid ancestor after 250
generations. Data points are the average rate of
adaptation (change in fitness between generation
250 and generation zero, divided by 250
generations) of two replicate fitness measurements
for the evolved clones. Clones from replicate
evolution experiments (A, B, and C) are indicated.
The tetraploids acquired significantly more
fitness in the same number of generations
compared with the haploids and diploids (t-test,
P , 1 3 10210). d, Estimates from the branching
evolution model of the best-fit value of the selection
coefficient and beneficial mutation rate of each
ploidy experiment, and their error range,
determined using a uniform distribution of
acquired mutations (other distributions are
analysed in Extended Data Fig. 2c, d, and the
equivalence principle model is analysed in
Extended Data Fig. 2e). Error ranges were obtained
by parametric bootstrap of 1,000 independent
realizations (Methods).
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2 MUTATIONAL SPECTRUM VARIES BY PLOIDY LEVEL 

Portions of this chapter are published previously or are currently under review: 

1. Anna M. Selmecki, Yosef E. Maruvka, Phillip A. Richmond, Marie Guillet, Noam 

Shoresh, Amber L. Sorenson, Subhajyoti De, Roy Kishony, Franziska Michor, 

Robin Dowell & David Pellman. 2015. Polyploidy can drive rapid adaptation in 

yeast. Nature 519:349–352.  

2. Amber L Scott, Phillip A. Richmond, Robin Dowell, Anna M. Selmecki. The influence 

of polyploidy on the evolution of yeast grown in a sub-optimal carbon source. 

Under Review.  

Anna Selmecki performed the experimental evolution experiment and comparative 

genome hybridization assays (aCGH). Phillip Richmond and Robert Thomas performed 

sequence alignment and variant calling in the whole genome sequencing. For complete 

details see the materials and methods (Chapter 2.3). 

2.1 Introduction 

We passaged isogenic haploid (1Ne), diploid (2Ne), and tetraploid (4Ne) yeast 

strains in raffinose medium, described in detail in the additional methods (Chapter 8.3). 

Raffinose, a poor source of carbon, provides a low but constant source of carbon in the 

media, which causes reduced growth rate relative to glucose. After roughly 250 

generations a single clone was isolated from each evolved population and both RNA 

and DNA were isolated for further analysis (Figure 2-1).  By convention, clones isolated 

from 1Ne, 2Ne, and 4Ne populations are denoted with strain identifiers in the 100s, 

200s, and 300s, respectively.  
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To understand the molecular mechanisms that lead to the adaptation of the 

tetraploid lineages to raffinose, and how these differed from haploid and diploid 

lineages, I first quantified the number and types of mutations gained in the evolved 

clones after 250 generations. I utilized whole genome sequencing (WGS) and 

comparative genome hybridization microarray (aCGH) to detect single nucleotide 

variants (SNVs) and copy number variations (CNVs) in each of 24 evolved haploid, 24 

evolved diploid, and 28 evolved tetraploid clones.  

 

 

 

Figure 2-1 Graphical summary of the design of the experimental evolution 
study.Isogenic YPF or CFP expressing yeast were seeded in equal molar 
concentrations into 96-well plates containing 2% raffinose media. 1N, 2N, and 4N 
populations were evolved in raffinose for 250 generations. Evolution was monitored 
daily by measuring the percentage of YFP and CFP expressing cells in the population. 
After 250 generations clones were isolated from the populations. Additionally, RNA and 
DNA were collected from the isolated clones for further analysis.  
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2.2 Results and Discussion 

2.2.1 Whole-chromosomal aneuploidy is common in tetraploid lineages 

Newly formed tetraploid yeast exhibit genome instability (Storchová et al. 2006) 

resulting in aneuploidy, and often converging on diploidy over time in a variety of growth 

conditions (Gerstein et al. 2006; Voordeckers et al. 2015). To test if the clones isolated 

from the evolved population had experienced chromosome loss or gain we used 

propidium iodide straining to measure DNA content (mean G1 fluorescence) by flow 

cytometry in 88 clones isolated from 1Ne and 2Ne populations and 176 clones isolated 

from 4Ne populations. Many 4N clones underwent large shifts in ploidy; however, no 

aneuploidy was detected in the 1Ne or 2Ne clones (Figure 2-2).  

 

 

Figure 2-2 4Ne clones are highly aneuploid after 250 generations in raffinose. 
DNA content (1C–4C) of evolved clones at generation 250, measured as the mean G1 
propidium iodide fluorescence for each evolved clone isolated from haploid (black), 
diploid (blue), and tetraploid (red) populations (n=88 haploid and diploid evolved clones, 
n=176 tetraploid evolved clones) in arbitrary units (a.u.). For reference, the DNA content 
of ancestral, control strains (1N, 2N, 3N, and 4N) is shown in grey.  
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To confirm the DNA staining and flow cytometry data, we used a combination of 

WGS and aCGH to determine chromosome copy number in the 1Ne, 2Ne, and 4Ne 

clones (Figure 2-3). In all tetraploids tested (n=30), only 1 (4Ne clone 337) remains 

completely 4N (Figure 2-3). For a complete list of chromosome copy numbers see 

appendix (Section 10). We also found that these chromosome-level alterations arose 

early in the evolution experiment; aneuploidy was detected in 4Ne clones isolated from 

generations 35 and 55 (Figure 2-4). Additionally, aneuploidy persisted as far as 500 

generations (Figure 2-4). Thus, aneuploidy in the 4Ne populations is an early 

mechanism to generate genomic diversity in the population that may lead to adaptation.  

To see if there was any trend in which chromosomes were aneuploid in the 

tetraploid clones, we performed pairwise correlations between each chromosome 

(Figure 2-5A). Pairwise patterns of chromosome copy number alterations were 

observed, indicating that there is a strong copy number relationship between certain 

pairs of chromosomes (Figure 2-5B). One potential explanation for the relationship 

between paired chromosomes is maintenance of stoichiometry of protein complex 

constituents. For example, chromosome VI disomes (1N+chromosome VI) are inviable 

due to an imbalance between TUB1 encoded on chromosome XIII and TUB2 encoded 

on chromosome VI (Torres et al. 2007; Anders et al. 2009).  Thus, the pairs of 

chromosome segregating together in the aneuploid strains may encode proteins in 

which stoichiometry is important. Alternatively, pairs of chromosomes may encode 

proteins that, when overexpressed together, are beneficial to growth in raffinose.   
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Figure 2-3 Chromosome copy number in evolved clones. Heat map of chromosome 
copy number data obtained from aCGH and WGS for the ancestral and evolved 1N, 2N, 
and 4N clones at generation 250; color key at bottom. For a complete list of 
chromosome copy numbers see appendix (Chapter 10). 

 

  

fitness relative to the diploid ancestor over time (Methods). Over 250
generations, the tetraploids adapted at a rate that was significantly faster
than haploids or diploids (Fig. 1c; t-test, P , 1 3 10210, Methods). This
faster rate of adaptation in tetraploids may be due to a higher rate of
beneficial mutations, higher fitness effects of the acquired mutations,
or both.

To gain insight into the rapid adaptation of tetraploids, we applied
two complementary mathematical modelling approaches (see Methods).
First, we use a model based on a branching evolutionary process19,
designed to mimic closely the divergence experiments. At each time-
step, a cell is chosen at random to die or to divide, with a probability
corresponding to its fitness. Mutations arise with rate m. If a mutation
occurs, the fitness of the daughter cell may change and the fitness increase
is then chosen from a fitness distribution. Second, we use the ‘equivalence
principle’ model17, which focuses on beneficial mutations that establish
in the population, and estimates that these mutations confer a single
effective fitness advantage. Proliferation of clonal subpopulations under
this model is deterministic. These simplifications are relevant to exam-
ples of high clonal interference, and are therefore only appropriate when
the population size is large or when the beneficial mutation rate is high20.
In both models, we assume no epistasis; the fitness change is indepen-
dent of whether the cell already had one or more mutations. Further-
more, there is no restriction on the number of cells that acquire beneficial
mutations, thus allowing clonal interference to occur18,21.

Both modelling approaches led to the same general conclusion: the
rapid adaptation of tetraploids results from both more frequent bene-
ficial mutations and stronger fitness effects (Extended Data Fig. 2 and
Methods). For the branching evolution model, these conclusions are
independent of the assumed distribution of beneficial mutations, although
there are differences in the magnitude of the best-fit values that are
expected from the shape of the chosen distribution (Fig. 1d and Extended
Data Fig. 2). Moreover, the conclusions are insensitive to the inclusion of
deleterious mutations in the model (Extended Data Fig. 3 and Methods).

To evaluate these conclusions experimentally, we performed whole-
genome sequencing (WGS) to compare the frequency of mutations in
the 1N and 4N ancestors with 74 evolved clones. In total, we identified
240 de novo sequence variants (single nucleotide polymorphisms (SNPs)
and small insertions/deletions): 45 from the 1N-, 69 from the 2N-, and
126 from the 4N-evolved clones, an average of 2.05, 2.87, and 4.5 variants
respectively per cell type (Supplementary Table 1). We observed signi-
ficantly more variants per 4N clone than per 1N- and 2N-evolved clones
(Fig. 2a; t-test, P , 1 3 1024 and P 5 0.0040, respectively). Note that
these results are not a direct measurement of the mutation rate or bene-
ficial mutation rate (m), but rather the total number of mutations acquired
during the experiment (see Supplementary Discussion).

Sequence variants frequently occurred in genes encoding proteins in
the Snf3/Rgt2 glucose-signalling pathway (SNF3, RGT2, MTH1, RGT1),
as expected from previous yeast evolution experiments under carbon-
source limitation22–24. Several independent mutations in these genes
resulted in either identical base-pair changes or altered the same amino
acid (Supplementary Table 1). Non-synonymous SNF3 mutations were
identified in all ploidy types, whereas loss-of-function mutations in
MTH1 were observed most frequently in the 1N-evolved clones.

In addition to WGS, we used a combination of flow cytometry, micro-
array comparative genome hybridization (aCGH), and quantitative PCR
(qPCR) to measure the frequency of DNA copy number variations (CNVs)
in the evolved clones. The only CNVs that arose in all three ploidy
types was amplification of two adjacent genes encoding the high-affinity
hexose transporters, HXT6 and HXT7, a frequently identified beneficial
mutation in low glucose environments18,22,23. The HXT6/7 amplification
was significantly more common in 2N- and 4N-evolved clones than
in 1N clones (t-test, P 5 0.005 and P 5 1 3 1024, respectively, Methods),
which may be due to negative epistasis between HXT6/7 amplification
and mutations in 1N cells, such as those in MTH1 (ref. 24).

Additional CNVs, including recurrent chromosome aneuploidy, were
detected only in the 4N-evolved clones. With the exception of a small

segmental amplification in one 2N-evolved clone, there were no CNVs
or aneuploidy in the ancestral strains or the 1N- and 2N-evolved clones
(Fig. 2b, c and Extended Data Figs 4 and 5). By contrast, many 4N clones
underwent large shifts in ploidy (Fig. 2b) and all but two of the 4N-evolved
clones were aneuploid at generation 250 (n 5 30; Fig. 2c, Extended Data
Fig. 6 and Supplementary Table 2). These alterations included large seg-
mental aneuploidies with breakpoints at loci of transposable elements
(Extended Data Fig. 7a). Pairwise patterns of chromosome copy num-
ber alterations were observed, indicating that there is a strong copy
number relationship between certain pairs of chromosomes (Extended
Data Fig. 7b, c). Notably, increased copy number of chromosome XIII
was significantly more common than all other aneuploidies (Extended
Data Fig. 7d; Cochran–Armitage test, P , 13 1027). These chromosome-
level alterations were present early, at the time of CFP/YFP marker diver-
gence in the 4N populations (,generation 45; Extended Data Fig. 8).
Therefore, 4N-evolved clones had a higher frequency and greater diver-
sity of mutations, supporting the inference from our mathematical
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Figure 2 | Tetraploid clones acquire frequent sequence variants, large-scale
ploidy shifts and recurrent whole chromosome aneuploidy during
adaptation. a, The number of sequence variants per clone was determined with
WGS of 74 evolved clones (22 haploid, 24 diploid, and 28 tetraploid clones;
Supplementary Table 1). The difference between tetraploids and haploids or
diploids was significant (t-test, P , 1 3 1024 and P 5 0.004, respectively).
b, DNA content (1C–4C) of evolved clones at generation 250, measured as
the mean G1 propidium iodide fluorescence for each evolved clone (n 5 88
haploid and diploid evolved clones, n 5 176 tetraploid evolved clones) in
arbitrary units (a.u.). For reference, the DNA content of ancestral, control
strains (1N, 2N, 3N, and 4N) is shown in grey. c, Heat map of chromosome
copy number data obtained from aCGH and WGS for the ancestral and evolved
1N, 2N, and 4N clones at generation 250; colour key at bottom. See Extended
Data Figs 4–6, and Supplementary Table 2 for all individual clones).
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Figure 2-4 Chromosome aneuploidy in early and late generations All 4N-evolved 
clones at (A) generations 35 and 55 and (B) generation 500 were aneuploid for multiple 
chromosomes or carried large segmental chromosome aneuploidies, except for clone 
4N_gen35_503, which remained tetraploid. Ploidy of the evolved clone, determined by 
flow cytometry, is indicated on the right, with +/- indicating chromosome aneuploidy. 
Figure and legend from (Selmecki et al. 2015). 

Extended Data Figure 8 | aCGH karyotype for tetraploid-evolved clones
at generations 35, 55, and 500. All 4N-evolved clones at (a) generations 35
and 55 and (b) generation 500 were aneuploid for multiple chromosomes or
carried large segmental chromosome aneuploidies, except for clone

4N_gen35_503, which remained tetraploid. Data are displayed as in Extended
Data Fig. 4. Ploidy of the evolved clone, determined by flow cytometry, is
indicated on the right, with 1/2 indicating chromosome aneuploidy.
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Figure 2-5 Pairwise patterns of chromosome aneuploidy A) The pairwise patterns 
(Pearson correlation) of all chromosome copy number alterations in the 4N-evolved 
clones at generation 250 (n=30, Table 10-3). The copy numbers of some chromosomes 
were correlated (for example, chromosome XV and chromosome XVI), whereas others 
were anti-correlated (for example, chromosome VIII and chromosome IX), possibly 
reflecting the need for gene expression balance. B) Hierarchical clustering showing 
the copy number relationship among the chromosomes. Figure and legend adapted 
from (Selmecki et al. 2015). 

 

 

Figure 2-6 Significant enrichment of chromosome XIII aneuploidy. The number of 
clones with the indicated aneuploid chromosome (X-axis). The color indicates whether 
the copy number increased (red) or decreased (blue). The copy number of chromosome 
XIII (asterisk) in the 4N-evolved clones at generation 250 was significantly different from 
that of all other aneuploid chromosomes (Cochran–Armitage test, p < 1x10-7).  

I II III IV V V
I

V
II

V
III IX X X
I

X
II

X
III

X
IV X
V

X
V

I0

5

10

15

20

Decreased
Increased *

N
um

be
r o

f c
lo

ne
s 

w
ith

 th
e 

an
eu

pl
oi

d 
ch

ro
m

os
om

e

Controls 1N 2N 4NA 4NB

0.0

2.5

5.0

7.5

10

Ploidy, t = 250

M
ea

n 
G

1 
Fl

uo
re

sc
en

ce
 (A

U
)

A

B

I    II    III       IV        V  VI   VII    VIII   IX   X     XI     XII      XIII    XIV    XV     XVI

4N_G2

4N_D9

4N_F2

4N_A8

4N_G11

4N_A3

C

FACS
Ploidy

4N

3N

4N

4N

3N

3N

HXT6/7

Extended Data Figure 7 | Analysis of recurrent and concerted chromosome
loss events in the tetraploid-evolved clones. a, Evolved tetraploids acquired
large segmental aneuploidies (regions greater than the ,7 kb HXT6/7
amplification); aCGH data for individual chromosomes with large segmental
aneuploidies in 4N-evolved clones (plotted using Treeview52). All breakpoints
occurred at or near Ty sequences (arrowheads). b, The pairwise patterns
(Pearson correlation) of all chromosome copy number alterations in the
4N-evolved clones at generation 250 (n 5 30, Supplementary Table 2). The
copy numbers of some chromosomes were correlated (for example,

chromosome XV and chromosome XVI), whereas others were anti-correlated
(for example, chromosome VIII and chromosome IX), possibly reflecting the
need for gene expression balance. c, Hierarchical clustering showing the
copy number relationship among the chromosomes. d, Proportion of all
chromosomes in the evolved tetraploid clones with the indicated copy number
(black). The copy number of chromosome XIII (grey) in the 4N-evolved clones
at generation 250 was significantly different from that of all other aneuploid
chromosomes (Cochran–Armitage test, P , 1 3 1027).
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Notably, increased copy number of chromosome XIII was significantly more 

common than all other aneuploidies (Figure 2-6; Cochran–Armitage test, p < 1x10-7). 

Aneuploidy itself has been shown to be beneficial in certain environments: 

isochromosome 5 in C. albicans is beneficial under anti-fungal stress and chromosome 

XV in S. cerevisiae is beneficial under proteotoxic stress (Selmecki et al. 2006; Chen et 

al. 2012). Other examples of the advantage of specific aneuploidies in yeast has been 

previously reviewed (Mulla et al. 2014).  This data suggests that chromosome XIII 

aneuploidy may be beneficial to growth in raffinose media. Chromosome XIII aneuploidy 

is characterized in Chapter 4.2.7. 

2.2.2 Copy number variation increases with ploidy level 

Copy number variation, defined here as discreet genome amplification and 

deletion events and segmental chromosome aneuploidies, is an important driver of 

evolution and individual variation (Koszul et al. 2004; Gazave et al. 2011; Iskow et al. 

2012). For example CNV is common in yeast during adaptation to glucose-, nitrogen-, 

and sulfate- limitation and antifungal drug stress (Brown et al. 1998; Dunham et al. 

2002; Selmecki et al. 2006; Gresham et al. 2008; Rancati et al. 2008; Hong and 

Gresham 2014). It has also been suggested that ploidy level may affect the number and 

repertoire of CNVs gained in adaptation: diploid yeast primarily adapted to growth in 

glucose-limited conditions though CNV and diploid cells gained a more diverse set of 

CNVs than isogenic haploids in a study designed to measure chromosome-scale 

mutations in yeast (Dunham et al. 2002; Zhang et al. 2013; Sellis et al. 2016). 

Furthermore, CNVs are often thought to be the first adaptive mutations gained in diploid 

and tetraploid lineages (Selmecki et al. 2015; Sellis et al. 2016). 
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To understand how ploidy level affected the number and type of chromosome-

scale CNVs gained in adaptation to raffinose, we used a combination of aCGH and 

WGS to quantify CNVs in the evolved clones. After 250 generations, a segmental 

duplication was detected on the right arm of chromosome V in the 2Ne clone 208 (Table 

10-2) and the left arm of chromosome XV in 4Ne clone 314 (Table 10-3). We detected 

segmental deletions on the right arm of chromosome IV in the 4Ne clones 301 and 335 

(Table 10-3). These CNVs occurred at or near Ty elements. Increase in chromosome-

scale CNVs in the 4Ne clones may be due to increased transposable element activity in 

newly formed tetraploids (Wendel 2000).  Notably, we did not detect chromosome-scale 

CNVs in the evolved haploid strains (Table 10-1), consistent with the finding by Sellis et 

al. (2016). 

CNV analysis indicated that many of the evolved clones had a tandem 

amplification of the HXT6 and HXT7 (HXT6/7amp) genomic region on chromosome IV 

(chromosome IV: 1,154,211-1,161,315). HXT6/7 copy number was quantified in each of 

the evolved clones using quantitative PCR of genomic DNA or aCGH. We found that the 

haploid, diploid and tetraploid strains gained amplifications in 1/24, 5/24, and 9/28 

evolved clones, respectively. HXT6 and HXT7 are 99.7% identical and located adjacent 

to each other in the genome. Amplifications of HXT6/7 are thought to occur as a result 

from ectopic gene conversion, which can result in extra chromosomal circular DNA, or 

unequal crossover, both of which occur during homologous recombination (Brown et al. 

1998; Møller et al. 2015). Thus, the increased frequency of HXT6/7amp with increasing 

ploidy level is consistent with increasing amounts of homologous recombination in 

diploids and tetraploids (Storchová et al. 2006). These data indicate that ploidy level has 
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a significant effect on the frequency of both chromosome-scale copy number variations 

as well as small-scale duplications, both of which play a role in the evolutionary 

outcomes of the lineages. 

2.2.3 Number of mutations per strain increases with increasing ploidy 

To determine the average number of mutations per strain, WGS with variant 

calling was performed for each evolved clone (Table 9-1). For each clone we quantified 

the total number of mutations, including SNVs and CNVs per strain (1Ne, Table 11-1; 

2Ne, Table 11-2; 4Ne, Table 11-3). The number of mutations per strain increases with 

increasing ploidy level, as the 1Ne, 2Ne, and 4Ne clones had on average 2.25, 3.1, and 

4.8 mutations per clone, respectively (Figure 2-7A). Given the previously measured 

mutation rate in yeast of 0.004 mutations per cell division per haploid genome (Lynch et 

al. 2008), we expect ~1, ~2, and ~4 mutations per strain after 250 generation in the 

haploids, diploids, and tetraploids, respectively. We recovered a greater number of 

mutations per clone than expected, however the number of mutations per clone is 

consistent with other studies in yeast grown under selection for 250 generations (Lynch 

et al. 2008; Araya et al. 2010; Kvitek and Sherlock 2011; Hong and Gresham 

2014).There are significantly more mutations per clone in the 4Ne clone than the 1Ne 

and 2Ne clones (p=7.8x10-6 and p=2.1x10-3, respectively, paired student t-test). This 

result is consistent with theoretical models that predict an increased number of 

mutations with the increased DNA target size at higher ploidy levels (Otto and Whitton 

2000). Additionally, increased DNA copy number allows for the buffering of mutations 

that would be deleterious in a haploid background (Korona 1999; Thompson et al. 2006; 

Otto 2007). 
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When the number of mutations per strain is adjusted for haploid genome content, 

there are, on average, significantly fewer mutations in the 2Ne and 4Ne clones (p=0.044 

and p=0.030, respectively, paired student t-test) compared to the 1Ne clones (Figure 

2-7B). One possible explanation for the decreased number of mutations per haploid 

genome in the 2Ne and 4Ne clones is elimination of neutral and deleterious mutations 

through either gene conversion events or chromosome loss. Elimination of deleterious 

mutations supports the advantage of yeast with higher ploidy levels in this environment.  

 
 

Figure 2-7 The number and spectrum of mutations per evolved clone varies by 
the initial ploidy.  A) The average number of mutations per evolved clone derived from 
the 1N (red), 2N (blue), and 4N (green) evolved populations. The number of mutations 
includes SNVs and CNVs (including both HXT6/7amp and segmental duplications).  B) 
The average number of mutations per clones per haploid genome in the 1N (red), 2N 
(blue) and 4N (green) evolved clones. Haploid genome content for each tetraploid 
evolved clone was by mean G1 fluorescence after 250 generations. C) The fraction of 
each mutation type in the 1N, 2N, and 4N experimentally evolved clones. Mutations 
were categorized as synonymous, non-synonymous, intergenic, frameshift or nonsense, 
and copy number variation (CNV). Figure and legend from (Scott et al. 2017).  
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2.2.4 Haploid lineages gain distinctly different mutations than higher ploidy 
lineages 

Each genomic variant that we detected in the evolved clones was annotated as 

intergenic, synonymous, non-synonymous, frameshift, or nonsense (Figure 2-7C; 

Chapter 11). For the non-synonymous and nonsense mutations, we further identified 

the amino acid that was altered in the resultant protein (Table 9-1). We do not detect a 

difference in the average number of synonymous mutations between the 1Ne, 2Ne, and 

4Ne clones (Figure 2-8). There are a greater number of non-synonymous mutations in 

the 2Ne (1.75x10-3, paired student t-test) and 4Ne (2.40x10-5, paired student t-test) 

clones compared to the 1Ne clones (Figure 2-8). However, the number of non-

synonymous mutations per ploidy level (27/38, 45/55, 69/97 in 1Ne, 2Ne, and 4Ne 

clones respectively) is not significantly different from what we would expect given that 

~79% of mutations that occur in the coding region are expected to be non-synonymous 

(p=0.233, p=0.74, p=1 in the 1Ne, 2Ne, and 4Ne clones respectively, exact binomial 

test) (Wenger et al. 2011). Therefore, the increase in non-synonymous mutations is due 

to the increasing number of mutations in the evolved diploid and tetraploid strains.  

There are a greater number of intergenic mutations per clone in the 2Ne 

(p=2.98x10-3, paired student t-test) and 4Ne (p=5.71x10-5, paired student t-test) clones 

compared to the 1Ne clones (Figure 2-8). Given that 72% of the yeast genome is 

coding, the number of intergenic mutations in the 4Ne clones is greater than expected 

4Ne (37/124, p=0.0014, exact binomial test). The greater amount of DNA in the higher 

ploidy strains may result in a larger number of hitchhiker mutations that do not have a 

fitness effect (Lang et al. 2013). However, there is one 4Ne clone, 306, which has only 3 

mutations, each occurring in intergenic regions. This strain raises the possibility that 
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intergenic mutations may not all be hitchhikers, but rather under positive selection. It 

has been shown that intergenic mutations can have positive fitness effects, such as 

mutations in cis-regulatory regions (Wray 2007; Payen et al. 2016). In fact, the vast 

majority of human disease associated variants do not occur in the coding regions of 

genes (Maurano et al. 2012). Gene regulators have been preferentially maintained in 

the genomes of many plants, animals, and fungi after whole genome duplication, 

reiterating the importance of non-genic regions during adaptive evolution (Van de Peer 

et al. 2009).	
   

The 1Ne clones, on average, had more frameshift and nonsense mutations per 

strain than the 2Ne and 4Ne clones (p=1.77x10-5 and 9.49x10-6, respectively, paired 

student t-test) (Figure 2-8). Given that the vast majority of frameshift and nonsense 

mutations result in loss-of-function (LOF) of the gene and that LOF mutations are 

almost exclusively recessive, haploids are more likely to carry LOF mutations than 

diploids or tetraploids (Kvitek and Sherlock 2013; Lang et al. 2013; Payen et al. 2016). 

Additionally, the number of CNVs was greater in the 2Ne (p=0.044, t-test) and 4Ne 

clones (p=8.70x10-3, paired student t-test). This is consistent with increasing levels of 

homologous recombination activity in diploids and tetraploids (Storchová et al. 2006). 

Thus specific properties of cells at different ploidy levels have an impact on the 

spectrum of mutations gained during adaptation.   
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Figure 2-8 The average number of each mutation type differs by ploidy in the 
evolved clones. The number of synonymous, non-synonymous, intergenic, frameshift 
or nonsense, and copy number variation (CNV) mutations was quantified for each ploidy 
level. The average number of each mutation type was plotted for clones derived from 
1N (red, n=24), 2N (blue, n=24), and 4N (green, n=28) experimentally evolved 
populations. It should be noted that the total number of mutations (shown here) includes 
both adaptive and neutral (hitchhiker) mutations observed within these populations.  2N 
and 4N clones had significantly more non-synonymous (p=1.75x10-3, 2.40x10-5), 
intergenic (p=2.9x10-3, 5.71x10-5), and CNV (p=0.044,8.70x10-3) mutations per clone 
and fewer frameshift/nonsense (p=1.77x10-5, 9.49x10-6) mutations per clone than 1N 
evolved clones. Additionally, 4N evolved clones had significantly more intergenic 
mutations than the 2N evolved clones (p=0.0144).  Error bars represent standard error 
of the mean (SEM). All comparisons are paired student t-test. Figure and legend from 
(Scott et al. 2017). 
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2.3 Materials and Methods 

2.3.1 Strains utilized in these studies 

Anna Selmecki constructed the ancestral strains utilized in the experimental 

evolution experiments and performed the experimental evolution study. For 

completeness, a detailed description of the ancestral strain construction can be found in 

Chapter 8.1. Additionally, a detailed description of the evolution experiment can be 

found in Chapter 8.3.  

The strains utilized in this chapter were isolated from populations at generations 

35, 55, 250, and 500. Methods utilized to isolate clones can be found in Chapter 8.3. A 

list of strains that were sequenced for this study, and the mutations identified in these 

strains, can be found in Table 9-1.  

2.3.2 Flow cytometry analysis of DNA content 

Anna Selmecki quantified DNA content by mean G1 fluorescence of propidiom 

iodide staining. Briefly, cells were prepared for propidium iodide staining with 

modifications to optimize preparation of samples in 96-well plates. Thirty thousand cells 

were analyzed using a BD LSRII High Throughput Sampler. FlowJo cell cycle analysis 

used the Dean–Jett–Fox model to estimate the mean G1 and G2 fluorescence peaks of 

each strain. Control ancestral 1N, 2N, 3N, and 4N strains were analyzed in triplicate 

with the evolved strains.   

2.3.3 Illumina sequencing 

Library preparation was performed primarily by Amber Scott with assistance by 

Anna Selmecki. Read mapping and variant calling was performed by Phillip Richmond 
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and Robert Thomas. Amber Scott and Anna Selmecki performed visual inspection of all 

variant calls.  

In line barcoded library preparation. Clones selected for WGS were cultured 

overnight from -80°C stocks in 2 ml Synthetic Complete + 2% raffinose medium. 

Genomic DNA was isolated using phenol–chloroform–isoamylalcohol (24:25:1) and 

bead beating. Libraries were prepared as described (Hittinger et al. 2010). Briefly, DNA 

was sheered with Diagenode Bioruptor (UCD-200) to a median size of 300–500 bp, 

end-repair was performed with an NEB Next End repair kit (NEB E6050L), and 

fragments were A-tailed with Klenow fragment (NEB M0212L). Custom adaptors with in-

line barcodes were ligated overnight. Adaptor ligated fragments were size selected on 

1% TBE agarose gel stained with Sybr Gold (Invitrogen S-11494) for fragments 

between 400 and 600 bp and isolated using Qiagen Gel Extraction Kit (28706). Libraries 

were amplified for 12 cycles with Illumina PE PCR primers 1.0 and 2.0. Libraries were 

pooled and underwent additional size selection for fragments of 400–600 bp.  

Following the Selmecki et. al. publication, two additional evolved clones were 

sequenced by Anna Selmecki and Robert Thomas (1Ne-131 and 1Ne-132). Libraries 

were prepared using the NexteraXT DNA Sample Preparation Kit with NexteraXT index 

kit, and following the manufacturer’s instructions (Illumina). Libraries were sequenced 

using an Illumina MiSeq (Creighton University). 

Raw data. The genomes were sequenced on an Illumina HiSeq 2500 at the 

University of Colorado at Denver Next Generation Sequencing Facility or MiSeq at 

Creighton University. The data, which had an inline barcode, were de-multiplexed by the 

sequencing facility into individual sample R1/R2 files—one file for each read in the pair. 
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The barcodes were removed before mapping using Fastx_trimmer v0.0.13.2 

(http://hannonlab.cshl.edu/fastx_toolkit/). Read trimming from the 5’ end of the R2 reads 

was performed on a sample-specific manner trimming anywhere from 0 to 28 base pairs 

using an in-house script and Fastx_trimmer.  

Mapping. Reads were mapped to the S. cerevisiae reference sequence for the 

laboratory yeast strain S288c reference genome (S. cerevisiae genome obtained 28 

July 2010 from the Saccharomyces Genome Database FTP site: http://downloads.yeast 

genome.org/sequence/S288C_reference/genome_releases/; actual genome: http:// 

downloads.yeastgenome.org/sequence/S288C_reference/genome_releases/S288C_ 

reference_genome_R63-1-1_20100105.tgz). The reads were mapped using the 

Bowtie2 v2.0.2 (Langmead and Salzberg 2012)  local alignment strategy, allowing for 

multiple mapping, and setting the following options:--very-sensitive-local -I 180 -X 

1,000–score-min G,70,8. The mapped reads then underwent file format conversion into 

the binary format for downstream analysis using Samtools view, sort, and index v0.1.18 

(Li et al. 2009). Post-alignment to the genome, duplicate pairs resulting from PCR over-

amplification were removed using Samtools rmdup, eliminating 1–5% of the paired 

reads. The reads were re-aligned over potential indel sites using the Genome Analysis 

Toolkit RealignerTargetCreator and IndelRealigner v2.4-9 (McKenna et al. 2010; 

DePristo et al. 2011).  

Variant calling and refinement. Variant calling was performed on the tailored 

read mappings using Genome Analysis Toolkit UnifiedGenotyper v2.4-9 (McKenna et 

al. 2010; DePristo et al. 2011). For the haploids and diploids, SNPs were called using 

default parameters; for the higher ploidy strains, the ploidy option was increased to 5n, 
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which allowed identification of mutations at allelic frequencies down to 5% alternative 

allele representation. Variant lists were combined on the basis of ploidy-type using 

Genome Analysis Toolkit CombineVariants (McKenna et al. 2010; DePristo et al. 2011). 

SNPs and short indels were compared with the ancestral set of mutations using in-

house scripts to generate a set of non-ancestral mutations. These mutations were 

filtered for alternative allele support and allelic frequency (more than two reads 

supporting an alternative allele for coverage 10x to 20x, and more than four reads 

supporting an alternative allele for coverage more than 20x). The filtered mutations 

were manually inspected using the Integrative Genome Viewer v2.1.19 (Thorvaldsdóttir 

et al. 2013) to refine the set and remove mapping artifacts such as strand 

representation bias, regional mapping quality issues from non-unique mapping, and 

artifacts of homopolymer and simple repeat alignments. We then Sanger sequenced 

variants with low read support (fewer than five reads supporting an alternative allele), as 

well as a subset of the other medium- and high-confidence variants. The final set of 

evolved variants discovered was annotated (synonymous, nonsynonmous, frameshift, 

etc) relative to the yeast gene annotations using an in-house script.  

2.3.4 Sequencing quality assessment 

Sequencing quality assessment was performed by Phillip Richmond, Amber 

Scott, and Anna Selmecki. Because our sequencing was highly multiplexed, quality 

assessment on the sequencing data was necessary to eliminate strains without 

adequate genome coverage. For the haploids and diploids, we determined the 

necessary depth of coverage to recover mutations in two ways. First, we took the set of 

‘strain-background’ mutations, which were identified by filtering the ancestral variant 
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calls for a conservative, high-quality (quality = 100), homozygous set of locations. Each 

strain was then queried for its ability to recapitulate these variants, reporting a 

percentage overlap between each strain’s variant calls and the set of background 

variants. Any strain with less than 97% of the background mutations was dropped from 

further consideration. Additionally, we examined the impact of sub-sampling down to 

various depths to investigate the impact of lower coverage on recovering variants. This 

was done using Picard’s DownsampleSam.jar (version 1.72, 

http://broadinstitute.github.io/picard/) on two high-coverage diploid strains to randomly 

down-sample the coverage to 100x, 50x, 25x, and 10x coverage. We examined the 

down-sampled data sets and found that the strain-unique SNPs could be captured even 

at a level of 10x coverage. Using this information, we set minimum coverage 

requirements for each strain on a genome-wide scale to eliminate strains without 

adequate genomic representation. We analyzed depth of coverage on all of the mapped 

data with BEDTools genomeCoverageBed v2.16.2 (Quinlan and Hall 2010). The per-

base coverage was then analyzed using an in-house script to produce statistics on 

minimum coverage per allele, average coverage, etc.  

2.3.5 SOLiD Sequencing 

Phillip Richmond and Anna Selmecki prepared the SOLiD sequencing libraries and 

Phillip Richmond performed all sequence analysis for the SOLiD sequencing libraries. 

Library preparation. We performed a pilot experiment on seven strains using 

SOLiD paired-end sequencing (Table 9-1). Clones selected for SOLiD sequencing were 

cultured overnight from -80°C stocks in 4ml Synthetic Complete + 2% raffinose medium. 

Genomic DNA was isolated using QIAGEN Genomic-Tip 1000 according to the 
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manufacturer’s instructions. SOLiD library preparation and sequencing was performed 

by the Molecular Biology Core Facility at the Dana-Farber Cancer Institute, according to 

the manufacturer’s instructions (Applied Biosystems, Life Technologies).  

Mapping. The sequencing reads were mapped to the S. cerevisiae reference 

genome (see ‘Mapping’ in the Illumina section above) using multiple different mapping 

software including BWA v.0.5.9 (Li and Durbin 2010), NovoAlignCS v1.01.05 

(Novocraft), Bfast v0.6.5a (Homer et al. 2009), and BowtieCS v0.12.7 (Langmead et al. 

2009). BowtieCS and BWA were used in the downstream variant calling and copy 

number changes, while NovoAlignCS and Bfast served as added support in manual 

inspection of variants. After mapping, the reads were post-processed for local 

realignment using SRMA v0.1.15 (Homer and Nelson 2010) and Samtools BAQ v0.1.18 

(Li et al. 2009).  

Variant calling and refinement. SNPs, small insertions and deletions (indels) 

were called from the post-processed reads using Samtools Mpileup v0.1.18 (Li et al. 

2009), VARiD v1.0.7f (Dalca et al. 2010), and Freebayes (v0.8.9, 

http://bioinformatics.bc. edu/marthlab/FreeBayes). Samtools and VARiD variant calls 

were used to identify the strain background (ancestral variants relative to the reference). 

These variants were filtered on the basis of reads supporting the allele in both 

directions, quality score of the call, and adequate read coverage over the call. Once 

filtered, all of the variant calls for the evolved strains were merged and compared with 

the ancestors. Variations were verified by manual inspection followed by Sanger 

validation for both a set of randomly sampled loci and regions of disagreement between 

different combinations of the mapping software and the variant callers (that is, 
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dinucleotide SNPs and multiple indels within a single read). The resulting set was later 

used for identification of strain-unique variants in the evolved strains.  

To identify strain-unique variants, Freebayes, a variant caller capable of higher- 

ploidy (ploidy = 2N), was used. Freebayes has the ability to set the assumed ploidy over 

a genomic region to adjust the expected distribution for allelic frequency. The assumed 

ploidy was determined using aCGH as well as copy number changes implied by shifts in 

depth of sequencing. The Freebayes called variants on each evolved progeny were 

then cross-referenced with the ancestral variants to produce strain-unique variants 

(Table 9-1These variants were then manually examined in Integrative Genomics Viewer 

(Thorvaldsdóttir et al. 2013) and validated by Sanger sequencing. PCR amplification 

and Sanger sequencing used primers located approximately 200 bp on either side of 

the sequence variants on DNA from both the evolved clone and the ancestor.  

2.3.6 Chromosomal CNV identification  

Phillip Richmond identified chromosomal copy number variations in the whole 

genome sequencing data. Identification of chromosomal CNVs used HTSeq v0.6.1 

(Anders and Huber 2010) in conjunction with custom scripts. HTSeq performs coverage 

estimations on a per-gene basis, and the custom scripts provided normalized log2 fold 

change between each sample and the ancestral haploid strain. Estimates on 

chromosomal copy number were inferred using the median value for the log2 fold 

change on a chromosome-by-chromosome basis. We implemented the Cochran–

Armitage test to determine whether chromosome XIII had a trend for higher copy 

number, relative to the copy number observed for all chromosomes in the tetraploid- 

evolved clones (Table 10-3, Figure 2-6). This trend analysis is similar to a chi-squared 
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test, but considers whether there is a significant trend or direction to the observed data 

set (chromosome XIII copy number).  

2.3.7 Microarray aCGH 

Anna Selmecki measured chromosome copy number in the ancestral and 

evolved clones by array CGH as follows. Fluorescently labeled DNA was prepared for 

CGH as described previously (Selmecki et al. 2005). Genomic DNA from all 

experimental strains was compared with the same pool of genomic DNA from the 

ancestral strain background PY3295 (BY4741, Research Genetics). Agilent yeast DNA 

4344K microarrays (ChIP-on-chip Kit) were used for the hybridization according to the 

manufacturer’s instructions (Agilent Technologies) with several modifications (M. 

Dunham online protocols, http:// dunham.gs.washington.edu/protocols.shtml). Briefly, 

2.0 mg of HaeIII-digested (New England Biolabs) genomic DNA was labeled with 2.1 ml 

of Cy3 or Cy5 (CyDye–Cy3-dUTP or CyDye–Cy5–dUTP, Amersham GE Healthcare). 

300ng of Cy3-labelled DNA (experimental strains) was mixed with 300ng of Cy5-

labelled DNA (control DNA) and the volume was brought to 44ml with nuclease-free 

water. Blocking buffer and hybridization buffer 2xHiRPM (Agilent Technologies) were 

added, and 100ml was applied to each sub-array; the microarray was hybridized at 

65°C for 17 h and then washed, scanned, and analyzed according to the manufacturer’s 

instructions. Agilent Feature Extraction data were converted from log10 ratios to log2 

ratios and plotted using Treeview (Saldanha 2004) and a custom Matlab script. A log2 

ratio of zero (baseline) indicates no difference in DNA copy number between reference 

and experimental samples (Selmecki et al. 2005; Selmecki et al. 2006). 
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2.4 Conclusions 

While the selection pressure (i.e. growth in raffinose, low constant fructose 

availability) are constant between the haploid, diploid and tetraploid populations in our 

study, the mechanisms driving evolution in the haploid cells differs from those in the 

diploid and tetraploid cells. Overall, both the number and spectrum of mutations differs 

in the 1Ne clones compared to the 2Ne and 4Ne clones. However, it is unknown to what 

extent the mutations acquired in these strains are beneficial mutations or hitchhikers 

(Lang et al. 2013). To understand the impact of these mutations on function, I utilize 

expression analysis in Chapter 3.  

As expected by theoretical models, the number of mutations acquired per strain 

in the evolution study increased with increasing ploidy (Figure 2-7A)(Ohno 1970; Otto 

and Whitton 2000). This may suggest one mechanism by which the tetraploid clones 

are adapting more rapidly than haploids and diploids in the evolution study. However, 

the diploids, which acquire more mutations than the haploids, do not have a significantly 

greater rate of adaptation than the haploids (Figure 1-4C). Therefore, it may not be the 

number of mutations, rather the types of mutations that are critical for the increased rate 

of adaptation in the tetraploid lineages.  

The haploid evolved clones acquire a different spectrum of mutations than the 

diploid or tetraploid clones (Figure 2-7C). This difference is driven primarily by a greater 

number of recessive mutations in the haploids, such as nonsense and frameshift 

mutations, which are inaccessible to the diploid and tetraploid lineages (Figure 2-8). On 

the other hand, diploid and tetraploid clones acquire a greater number of non-

synonymous and intergenic mutations than the haploid clones (Figure 2-8). In all ploidy 
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levels the number of non-synonymous mutations is not significantly different than 

expected by the exact binomial test (Hong and Gresham 2014).  However, the number 

of intergenic mutations in the haploid evolved clones is fewer than expected (exact 

binomial test, p=8.02x10-7). While it is not clear why the haploids have fewer intergenic 

mutations, non-coding variants are increasingly thought to contribute to disease 

(Maurano et al. 2012). Thus, otherwise deleterious intergenic mutations may be 

buffered in higher ploidy cells while causing decreased fitness in haploid lineages (Otto 

and Whitton 2000).  

The most striking difference between the types of mutations acquired at the 

different levels of ploidy is in increase in copy number variations observed with 

increasing ploidy. Higher ploidy strains amplified the HXT6/7 genomic region with higher 

frequency and acquired segmental duplications more often (Figure 2-8). Additionally, 

tetraploid evolved clones became highly aneuploid, whereas haploid and diploid clones 

remained 1N or 2N, respectively, throughout the evolution experiment (Figure 2-3). 

Importantly, chromosome-scale copy number variation and aneuploidy occurred early in 

adaptation to raffinose (Figure 2-4A). Thus, copy number variation may be a key 

mechanism of early adaptation in tetraploid lineages.  
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3 PATHWAYS OF ADAPTATION 

A portion of this chapter is currently under review and was submitted as: 

Amber L Scott, Phillip A. Richmond, Robin Dowell, Anna M. Selmecki. The influence of 

polyploidy on the evolution of yeast grown in a sub-optimal carbon source. Under 

Review. 

3.1 Introduction 

 In the second half of the study, I focus on the adaptive pathways utilized in the 

haploid, diploid, and tetraploid populations to adapt to growth in 2% raffinose media. In 

particular, I examine the extent of parallel evolution in the clones sequenced in the 

previous chapter. Parallel evolution is defined as the same change having evolved 

independently multiple times (Wichman 1999). This can mean parallel gene expression 

alterations or adaptive mutations in the same gene (Cooper et al. 2003; Fisher and 

Lang 2016). Experimental evolution studies in yeast have observed parallel expression 

changes in replicate populations (Ferea et al. 1999; Gresham et al. 2008). Additionally, 

studies have recovered mutations in the same genes from independent populations 

(Kao and Sherlock 2008; Hong and Gresham 2014; Voordeckers et al. 2015). However, 

these studies were performed on only a small number of replicate populations. Our 

study is the largest study to date to examine adaptive pathways in clones isolated from 

independent populations.   

To determine the pathways of adaptation, I performed whole genome expression 

analysis or quantitative PCR in over 100 evolved clones derived from the haploid, 

diploid, and tetraploid populations. I demonstrate that the key adaptive mutation in the 
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evolved clones is predicted by a gene expression signature of just 5 genes. I further 

determine the primary adaptive mutation for all but 5 evolved clones and assess to what 

extent the different ploidy levels exhibit parallelism in the modes of adaptation. The 

adaptive mutations identified encompass a narrow set of genes, indicative of parallel 

evolution between strains at each ploidy level. However, the initial ploidy affected the 

relative likelihood of a given adaptive pathway.  

3.2 Results and Discussion 

To further understand the mechanisms by which strains of differing ploidy level 

adapted to growth in raffinose medium, we examined gene expression changes in the 

evolved clones after evolution. We utilized strand-specific RNA sequencing followed by 

differential expression analysis on 8 evolved clones (2 haploid, 2 diploid, and 4 

tetraploid) as well as both the diploid and tetraploid ancestral strains.  Furthermore, we 

combined gene expression data with the previously described (Chapter 2) whole 

genome sequencing data to correlate adaptive mutations with their gene expression 

phenotype. 

3.2.1 Tetraploids ancestor exhibits greater stress in raffinose 

Tetraploid yeast strains differentially express only a few genes compared to 

isogenic diploids when grown in rich media (Galitski et al. 1999; Storchová et al. 2006; 

Wu et al. 2010). However, this may not be true in other growth conditions. Thus, we 

initially sought to determine the relative impact of growth in raffinose on the expression 

profiles of the diploid and tetraploid ancestors. We performed differential expression 

analysis and gene ontology (GO) enrichment between the diploid and tetraploid 

ancestral strains grown in raffinose (Figure 3-1). There were 177 genes differentially 
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expressed between the diploid and tetraploid ancestors (Table 12-2). Genes over-

expressed in the tetraploid ancestor are significantly enriched for processes involved in 

starvation, including energy reserve, glycogen, glucan, trehalose, polysaccharide and 

carbohydrate metabolic processes as well as other biosynthetic processes (Table 13-3). 

These processes indicate that the tetraploid ancestral strain may have to reach further 

into energy reserves than the diploid ancestor.  

This differential expression between the 2N and 4N ancestors is not entirely 

explained by increased metabolic need. The differentially expressed genes are also 

enriched for genes involved in oxidative stress, suggesting that the tetraploid is more 

stressed than its diploid counterpart when grown in raffinose media (Table 13-3). To test 

if the tetraploid ancestor exhibited gene expression alterations related to the 

environmental stress response, we determined the enrichment of the environmental 

stress response (ESR) genes in tetraploid ancestral expression profile (Gasch et al. 

2000). The environmental stress response (ESR) is defined in yeast as a specific set of 

genes that are commonly altered in expression in response to a wide range of stressors 

(Gasch 2002). For this analysis we utilized a gene set enrichment approach where the 

enrichment score is determined from the correlation of up-regulated and down-regulated 

gene sets, in our case ESR genes, with a rank ordered list, in our case the log2-

expression ratio between the tetraploid ancestor and diploid ancestor (Subramanian et 

al. 2005; Lamb et al. 2006). The expression of the ESR genes is positively enriched in 

the tetraploid ancestor, with an enrichment score of 0.996 out of a maximum of 1, 

indicating that the total gene expression profile of the 4N ancestor is consistent with the 

environment stress response (Figure 3-2).  
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Figure 3-1 Comparative gene expression between the 2N and 4N ancestor. 
Normalized log10 gene expression in the tetraploid ancestor (Y-axis) compared to the 
diploid ancestor (X-axis). The gene expression values for each gene are the normalized 
read counts calculated by DESeq. Significantly differentially expressed genes (Adjusted 
P<0.05) are denoted by red circles. The density of genes is indicated by color from solid 
blue dots (low density) to red dots (high density). The dashed cyan lines indicate 2-fold 
differential expression. 
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Figure 3-2 ESR enrichment in the tetraploid ancestral strain. The log2expression 
ratio is ordered from lowest (down-regulated genes, purple) or highest (up-regulated 
genes, green). The position of known upregulated (red) or downregulated (blue) genes 
in the environmental stress response are labeled by lines. Enrichment scores range 
from +1 to -1, indicating positive or negative enrichment, respectively. An enrichment 
score of 0 indicates no enrichment. ESR genes are enriched in the tetraploid ancestor 
relative to the diploid ancestor with an enrichment score of 0.996.  
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To confirm that the stress response was exclusive to the tetraploid ancestor 

grown in raffinose, we measured the expression of five iso-enzyme pairs in the 1N, 2N, 

and 4N ancestral strains grown in glucose-limited media (SC + 2% raffinose). Each pair 

of iso-enzymes consists of two genes with similar enzymatic function; the expression of 

one gene in the pair is upregulated in ESR and the expression of the other gene is 

unaffected by ESR. Thus, the non-ESR iso-enzyme internally controls for expression 

changes that may be environment or ploidy specific. While the trend indicated that the 

4N ancestral strain specifically over-expresses the iso-enzymes associated with ESR, 

the gene expression differences are not significant (Figure 3-3, paired student t-test). 

Stress levels have been associated with an increase in mutation rate (Bjedov et al. 

2003; Galhardo et al. 2007) and genome instability (Forche et al. 2011; Chen et al. 

2012). This increase in ESR in the tetraploid background may suggest the mechanism 

behind increased adaptation rate in the tetraploid lineages compared to haploid and 

diploid lineages.  
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Figure 3-3 Increase in environmental stress response in 4N ancestral strain. 
Relative normalized gene expression for iso-enzyme gene pairs in haploid (black), 
diploid (light grey), and tetraploid (dark grey) ancestral strains. Gene expression is 
normalized internally to ACT1 expression and relative to the diploid ancestor. The 
enzyme in each pair associated with the environmental stress response is indicated by 
an asterisk. Error bars represent the SEM, n=5.  
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3.2.2 Evolved clones show few expression differences from ancestral strain 

To understand how the evolved clones adapted, we compared the gene 

expression profile when grown in raffinose of each evolved clone to the diploid ancestor 

(Figure 3-4, Figure 12-1, Figure 12-2). We found few alterations in gene expression in 

the evolved clones, on average only 26 genes were differentially expressed when 

compared to the diploid ancestor (Chapter 12). In contrast, previous gene expression 

studies on yeast strains evolved in glucose-limiting conditions found major metabolic 

shifts in the evolved clones (Ferea et al. 1999; Gresham et al. 2008). There are two 

major differences in our study compared to the previous studies that may affect the 

expression of metabolic genes: we propagated cells by serial transfer rather than 

growth in a chemostat and cultures were adapted in raffinose rather than low glucose. 

Given the small changes observed in expression profiles, the increased growth rate of 

the evolved clones in raffinose must therefore be due to only small changes in the 

expression of many genes, large changes in a few key genes, or due to alterations at 

the protein level. 

3.2.3 Glucose transport is upregulated in the evolved clones 

We performed gene ontology (GO) term enrichment on the genes that were 

differentially expressed between the diploid ancestor and each evolved clone to 

determine the pathways that contributed to the adaptation (Chapter 13). There are two 

terms commonly enriched in the evolved clones: phosphate ion transport genes are 

commonly downregulated and carbohydrate transport genes are frequently upregulated 

in the evolved clones.  
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Figure 3-4 mRNA expression profile in the evolved clones Log2-transformed gene 
expression ratio between evolved clones (131, 132, 232, 233, 334, 335, 336, 337) and 
the diploid ancestral strain. Hierarchical clustering was performed for both genes (y-
axis, n=5383) and evolved clones (x-axis). Figure and legend from (Scott et al. 2017). 
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Phosphate ion transport is decreased in all of the evolved clones; primarily driven 

by the overexpression of PHO84 and PHO89 in the diploid ancestor (Figure 3-5A). We 

measured, by qRT-PCR, the expression of PHO84 in the ancestral haploid and 

tetraploid strains. Only the diploid ancestor consistently had elevated PHO84, though 

with high variability (Figure 3-5B). Regulation of the phosphate genes is controlled by a 

hysteretic switch which may contribute to variability in activation of the phosphate 

transporters (Raser and Shea 2006).   

 

Figure 3-5 Evolved clones differentially regulate phosphate ion transport. A) Log2-
transformed expression of genes annotated with the GO-function of phosphate ion 
transport.. B) qRT-PCR expression of PHO84 relative to ACT1 expression in the haploid 
(red), diploid (blue), and tetraploid (green) of 5 biological replicates. Error bars represent 
the standard error of the mean (SEM). Figure and legend from (Scott, AL et al. 2017). 
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Consistent with adaptation to a carbon stress, the differentially expressed genes 

also show enrichment for carbohydrate transport, specifically the hexose transporters 

(Figure 3-6). Carbohydrate transport is a common mode of adaptation to glucose-limited 

growth conditions; previous studies have identified mutations in the carbohydrate 

sensing and transport genes in yeast grown in low-glucose environments (Brown et al. 

1998; Gresham et al. 2008; Kao and Sherlock 2008; Koschwanez et al. 2013; Kvitek 

and Sherlock 2013). To understand how carbohydrate transport was altered in our 

raffinose-evolved clones, we performed hierarchical clustering of the RNA expression of 

genes annotated as “carbohydrate transport” in the evolved clones relative to the diploid 

ancestor (Figure 1-3). Of the ontological carbohydrate transport genes, only the hexose 

transporters are differentially expressed.  

To test if ploidy level itself has an effect on the expression of the hexose 

transporters in different carbon sources, we measured the expression of HXT1, HXT2, 

HXT3, HXT4, HXT6/7, and SUC2 in SC + 0.1% glucose, SC + 2% glucose, SC + 2% 

galactose, and SC + 2% raffinose (Figure 3-7). Ploidy level itself does not impact the 

expression level of the hexose transporters. However, the carbon source does influence 

the level expression of the different transporters, as previously described (Chapter 1.8). 

Notably, the ancestral strains over-express HXT6/7, HXT2, and SUC2 when grown in 

raffinose media (Figure 3-7D). Additionally, galactose, a non-fermentable carbon, does 

not induce expression of any of the glucose transporters in the ancestral strains (Figure 

3-7B), as expected (Ozcan and Johnston 1999).  
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Figure 3-6 Evolved clones differentially regulate carbohydrate transport. Log2-
transformed gene expression of genes annotated with the GO-function of carbohydrate 
transport. The evolved clones cluster in 2 clades driven by overexpression of either the 
hexose transporters 1 through 4 (HXT1-4) or the HXT6 transporters. Figure and legend 
from (Scott, AL et al. 2017). 
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Figure 3-7 Ancestral ploidy does not alter the expression of glucose responsive 
genes in various carbon sources. qRT-PCR gene expression analysis of glucose 
responsive genes (HXT1, HXT2, HXT3, HXT4, HXT6/7, and SUC2 internally normalized 
to ACT1 expression for the 1N (red), 2N (blue), and 4N (green) ancestral strains grown 
in A) 0.1% Glucose, B) 2% Galactose, C) 2% Glucose, and D) 2% Raffinose. n=2, error 
bars represent SEM. Figure and legend from (Scott, AL et al. 2017). 
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DNA sequence data indicates the strains overexpressing HXT2, HXT3, and 

HXT4 have mutations in glucose sensing and signal transduction (SNF3 and MTH1) 

while the strains up-regulating HXT6/7 have amplifications of the HXT6/7 region (Table 

9-1). These data suggest that there are two distinct pathways to up-regulate glucose 

transport in yeast. This pattern of mutually exclusive transporter usage was observed 

previously in a study on mutations arising in response to growth in low glucose (Kvitek 

and Sherlock 2011). The study demonstrated that MTH1 and HXT6/7amp mutations 

individually give increased fitness, yet a strain with both MTH1 and HXT6/7amp 

mutations has decreased fitness when grown in a low-glucose environment (defined as 

negative epistasis).  

One exception in the HXT6/7 expressing cluster is that 4Ne clone 334 does not 

have HXT6/7amp. This strain contains 3 mutations, all of which are located in coding 

regions and 2 of which are non-synonymous: YTA7, a histone binding protein, and 

TOR2, a subunit of the TOR complex (Table 9-1). It is not currently understood how 

HXT6 and HXT7 are fully regulated, therefore it is possible that one of these mutations 

(YTA7 or TOR2) increases HXT6/7 expression and may shed light on glucose transport 

regulation in yeast. Additionally, the TORC/Sch9 pathway has been implicated in 

genome stability in tetraploid cells and improves fitness in other experimental evolution 

studies (Lu et al. 2016; Venkataram et al. 2016). 

Overall, the RNA expression profiles of the evolved clones indicated that the 

main mechanism of improved growth in raffinose is to take up more carbon into the cells 

via hexose transporters. Additionally, there are clearly two mutually exclusive 

mechanisms to increase hexose transport, by up regulating HXT2-4 or HXT6/7. Each of 
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these pathways can be accessed by mutations in different genes, known to be involved 

in glucose signaling, such as SNF3, MTH1, and HXT6/7, as well as novel regulators of 

glucose transport. These data suggest that profiling the expression of a handful of 

genes may be sufficient to determine the pathway of adaptation in a larger population of 

the evolved clones.  

3.2.4 Evolved clones form distinct clusters by RT-qPCR 

To determine whether a small panel of genes can identify the adaptive pathway in 

an evolved clone, we measured the gene expression pattern of the hexose transporters 

HXT2, HXT3, HXT4, HXT6/7, and the invertase SUC2 (Table 3-1). This set of genes 

was, by RNA-seq, diagnostic for the adaptive pathway in a set of evolved clones.  We 

profiled the gene expression panel in 27 evolved haploid, 32 evolved diploid, and 37 

evolved tetraploid clones that showed increased fitness in raffinose. RNA was collected 

from each clone in log-phase growth in raffinose media and gene expression was 

measured by RT-qPCR.   

Hierarchical cluster analysis (HCA) was performed on log2-transformed normalized 

gene expression relative to the diploid ancestor grown in the same condition.  The 

resultant gene panel dendrogram is plotted with a heatmap of the gene expression data 

in Figure 3-8. While the RNA-seq data suggested two distinct patterns of HXT 

expression, the larger set of evolved clones cluster into five primary clades, labeled a-e. 

The optimal number of clades was selected by qualitative inspection of within-group 

variance estimation versus model complexity (Figure 3-9).  
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Gene 
name 

Systematic 
name Description 

HXT2 YMR011W 
High affinity glucose and fructose transporter, expression is 
induced by low levels of glucose and repressed by high levels of 
glucose. 

HXT3 YDR345C Low affinity glucose and fructose transporter, expression is 
induced in both low or high glucose conditions. 

HXT4 YHR092C 
Intermediate affinity glucose and fructose transporter, expression is 
induced by low levels of glucose and repressed by high levels of 
glucose. 

HXT6/HXT7 YDR343C/ 
YDR342C 

High-affinity glucose and fructose transporters, expressed at high 
basal levels relative to other HXTs. HXT6 and HXT7 are located 
adjacent to on chromosome IV and differ by only 2 amino acids. 

SUC2 YIL162W Invertase, the glycosylated form is secreted and hydrolyzes 
extracellular raffinose into fructose and melibiose. 

Table 3-1 Glucose responsive gene expression panel 
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Figure 3-8 Expression of carbohydrate metabolism genes cluster evolved clones 
by adaptive mutation. Heatmap and dendrogram of log2-transformed qRT-PCR gene 
expression ratio between haploid evolved clones (n=27), diploid evolved clones (n=32), 
and tetraploid evolved clones (n=37) and the diploid ancestral strain. Evolved clones are 
clustered by the expression of a subset of genes involved in carbohydrate transport 
(HXT2, HXT3, HXT4, and HXT6/7) and metabolism (SUC2). The strain identifier color 
indicates the adaptive mutation determined for each evolved clone with whole genome 
or targeted Sanger sequencing: SNF3 (blue), RGT2 (light blue), MTH1 (red), HXT6/7amp 
(green), MOT3 (yellow), IPT1 (purple), other (orange), and undetermined (grey). 
Asterisks (*) indicate the evolved clones for which targeted Sanger sequencing 
confirmed the mutation predicted by cluster analysis. Initial ploidy for each evolved 
clone is indicated by strain number: 1XX =1N, 2XX = 2N, and 3XX = 4N.  Figure and 
legend from (Scott, AL et al. 2017). 
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Figure 3-9 Within group variance is minimized at k=5. The averages total sum of 
squares (TSS) (Y-axis) for k clusters (x axis) was quantified using kmeans for the log2-
transformed gene panel expression data. The TSS was averaged over 20 trials (black 
dots) at each k. The null hypothesis (grey line) is that the variance decreases linearly 
with model complexity. The optimal number of groups was determined by visual 
inspection of the number of clusters (k) at which the change in TSS becomes linear. 
Figure and legend from (Scott, AL et al. 2017). 

  



 62 

3.2.5 Evolved clones form gene expression clusters by adaptive mutation 

To understand how the clusters of gene expression related to the underlying 

mutations in the evolved clones, we determined the most likely primary adaptive 

mutation for each evolved clone from the WGS data (Table 9-1). Adaptive mutations in 

genes not previously known to be involved in glucose uptake or metabolism were 

determined based on multiple strains harboring unique mutations within the same gene. 

In five evolved clones we were not able to determine a primary adaptive mutation from 

the WGS. The identity of adaptive mutations in indicated on Figure 3-8 by the color of 

strain identifier: SNF3 (blue), RGT2 (light blue), HXT6/7amp (green), MTH1 (red), MOT3 

(yellow), and IPT1 (purple), Other (orange) and Unknown (grey). The clades identified 

by HCA are comprised primarily of evolved clones harboring adaptive mutations within 

the same gene, despite additional background mutations and underlying karyotype. This 

is significant because it directly connects the gene expression phenotype in the evolved 

clones to mutations gained during the evolution experiment.  

3.2.6 Gene expression clusters are predictive of adaptive mutation 

To test whether our gene expression profiles were predictive of the underlying 

mutation, we profiled the gene expression panel (Table 3-1) in an additional 3 evolved 

haploid, 9 evolved diploid, and 9 evolved tetraploid clones for which WGS is 

unavailable. The adaptive mutation was predicted in each evolved clone based on how 

the strains cluster in the gene panel dendrogram (Figure 3-8, indicated by an asterisk). 

The predicted genes were then verified by targeted Sanger sequencing and HXT6/7 

copy number was quantified for all additional strains by either quantitative PCR or 

aCGH of the genomic DNA. In all twenty-one cases, the predicted mutation was 
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confirmed (Table 3-2). This represents the first study in which the identity of adaptive 

mutations was determined based on a particular phenotype, in this case gene 

expression, in an evolved strain.  

 

 

Strain	
  
Identifier	
   Gene	
   Amino	
  Acid	
   HXT6/7	
  status	
  

115* MTH1 I353fs qPCR	
  No	
  HXT	
  
119* MTH1  I353fs qPCR	
  No	
  HXT	
  
126* MTH1 S133fs qPCR	
  No	
  HXT	
  
201* HXT6/7amp  CGH  +HXT 
215* SNF3 A214E qPCR No HXT 
216* SNF3 G157A qPCR No HXT 
217* HXT6/7amp  CGH  +HXT 
220* SNF3 G157A qPCR No HXT 
228* HXT6/7amp  CGH  +HXT 
229* SNF3 E439R qPCR No HXT 
230* HXT6/7amp  CGH  +HXT 
231* SNF3 V470F qPCR No HXT 
301* SNF3 T385R CGHed	
  	
  No	
  HXT	
  
302* SNF3 E550K CGHed	
  	
  No	
  HXT	
  
303* SNF3 A491D qPCR	
  No	
  HXT	
  
308* SNF3 A491D qPCR	
  No	
  HXT	
  
317* HXT6/7amp 

	
  
CGHed	
  +HXT	
  

318* SNF3 E413K CGHed	
  	
  No	
  HXT	
  
325* HXT6/7amp   qPCR	
  +HXT	
  
326* HXT6/7amp   qPCR	
  +HXT	
  
330* HXT6/7amp   CGHed	
  +HXT	
  

Table 3-2 Identity of predicted adaptive mutations 
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3.2.7 The spectrum of adaptive mutations differs by ploidy level 

The primary mode of adaptation at all ploidy levels is to increase glucose uptake 

by over-expression of the hexose transporters. This is achieved by the up-regulation of 

HXT2, HXT3, and HXT4 primarily through mutations in SNF3 and MTH1 or by 

amplification of the HXT6 and HXT7 genomic region. The spectrum of primary adaptive 

mutations differed in the evolved clones with increasing ploidy level (Figure 3-10). The 

majority of primary adaptive mutations gained in the haploid strains were LOF mutations 

in the signal transducer MTH1, loss of which is recessive in higher ploidy backgrounds. 

Conversely, the diploid and tetraploid evolved clones adapted through mutations in 

glucose sensors or amplification of the glucose transporters HXT6 and HXT7. Overall, 

the tetraploid evolved clones gained adaptive mutations encompassing more of these 

genes than haploids and diploids, indicative of greater flexibility in adaptation to 

raffinose (Figure 3-10). 

A significant difference between haploid, diploid, and polyploid yeast is the 

surface area to volume ratio (Storchová et al. 2006). Since higher ploidy cells have a 

lower surface to volume ratio, they exhibit differential expression of cell surface 

constituents, including nutrient transporters (de Godoy et al. 2008; Wu et al. 2010). A 

decreased surface area to volume ratio at higher ploidy levels is likely to contribute to 

greater selection acting on the over-expression of these genes (de Godoy et al. 2008). 

Thus, fundamental differences in cell size with increasing ploidy are one force that may 

drive the differential spectrum of adaptive mutations with increasing ploidy. 
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Figure 3-10 The spectrum of adaptive mutations in the evolved clones differs with 
increasing ploidy. The fraction of evolved clones derived from 1N, 2N, or 4N 
populations with the indicated adaptive mutation.  The color denotes the adaptive 
mutation determined for each evolved clone with whole genome or targeted Sanger 
sequencing: SNF3 (blue), RGT2 (light blue), MTH1 (red), HXT6/7amp (green), MOT3 
(yellow), IPT1 (purple), other (orange), and undetermined (grey). Figure and legend 
from (Scott, AL et al. 2017). 
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3.2.8 Adaptive mutation is a better separator of evolved clones than ploidy 

To examine the effect of underlying ploidy on the gene expression profiles in the 

evolved clones, we performed linear discriminant analysis (LDA) on the gene 

expression panel. LDA is a form of dimensionality reduction that is similar to principal 

component analysis (PCA), which models the data to emphasize the components that 

explain the most variation in the data set. However, unlike PCA, LDA attempts to model 

the difference between the data classes as well. We classified the strains by either 

primary adaptive mutation or initial ploidy (Figure 3-11). 

We found that LDA performs considerably better when the data is classified by 

adaptive mutation rather than initial ploidy. When the strains were classified by adaptive 

mutation the strains form discrete groups (Figure 3-11). When the evolved clones are 

classified instead by initial ploidy, the resulting groups were not well defined (Figure 

3-11). We did observe some separation of the haploid clones, likely due to the fact that 

the majority of haploid strains gained a mutation in the same gene, MTH1. Together, 

these results confirm that adaptive mutation is the main driver for expression differences 

in glucose uptake in the evolved clones. However, the initial ploidy influenced the 

relative frequency of the different adaptive mutations gained during adaptation. 
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Figure 3-11 Linear discriminant analysis separates evolved clones into distinct 
populations by adaptive mutation. Linear discriminant analysis (LDA) of the log2-
transformed gene expression ratio of the evolved clones relative to the diploid ancestral 
strain. Gene expression of HXT2, HXT3, HXT4, HXT6/7, and SUC2 was measured by 
qRT-PCR and normalized to ACT1 expression.  A) LDA of the evolved clones classified 
by adaptive mutation. The marker color indicates the major classes of adaptive 
mutations: parental (black), SNF3 (blue), RGT2 (light blue), MTH1 (red), HXT6/7amp 
(green), MOT3 (yellow), IPT1 (purple), other (orange), and undetermined (grey). The 
ellipses denote the confidence interval of 95% for each major class of primary adaptive 
mutation. B) LDA of the evolved clones classified by initial ploidy. The marker color 
indicates the initial ploidy: 1N (red), 2N (blue), 4N (green). The ellipses denote the 
confidence interval of 95% for each ploidy level. Figure and legend from (Scott, AL et al. 
2017). 
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3.3 Materials and Methods 

3.3.1 Growth Conditions 

Cells were grown for RNA isolations by either Amber Scott or Phillip Richmond. 

For the RNA expression analyses, yeast were grown to saturation at 30°C at 300rpm for 

20 hours in synthetic complete media (SC)+2% raffinose. Cell density was determined 

by optical density (OD) and cells diluted to 0.2 ODU in SC+2% raffinose. Cultures were 

grown at 30°C at 300rpm until mid-log growth (0.8-1.0 ODU). RNA-seq cultures were 

grown in 100mL of media in a flask while qRT-PCR cultures were grown in 5mL culture 

tubes. Cells were pelleted at 4°C for 5 minutes at 5000xg, washed with DEPC treated 

water, snap frozen and stored at -80°C. 

3.3.2 RNA Isolation  

RNA isolations were prepared by Amber Scott and Phillip Richmond. RNA was 

isolated using the hot acid phenol RNA extraction method and RNA was DNase treated 

with RQ1 DNase at 37°C for 60 minutes (Promega, M6101). The DNase-treated RNA 

was extracted with phenol:chloroform:isoamyl alcohol 25:24:1 (sigma, P2069) followed 

by chloroform extraction. The DNase-treated RNA was precipitated and the pellet was 

resuspended in 50uL DEPC treated H20. RNA quality was assed by electrophoresis in 

MOPs gel or BioAnalyzer (BioRad). Total RNA was used for input into the RNA-seq 

library and RT-qPCR. 
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3.3.3 RNA Library Construction 

RNA sequencing libraries were prepared by Amber Scott. Strand specific RNA 

libraries were prepared using the Illumina RNA ligation library protocol from (Levin et al. 

2010). Resultant libraries were assessed by BioAnalyzer before sequencing. 

mRNA enrichment Poly(A) tailed RNA was isolated from total RNA with the 

Oligotex mRNA mini kit (Qiagen, 70022) following manufacturer’s directions. 

Unfortunately this method does not sufficiently remove ribosomal RNA. We have since 

isolated mRNA with magnetic beads, which works much more efficiently. I tested mRNA 

isolation methods, including the optimal number of bead bindings for the magnetic 

beads. Details can be found in my lab notebook. 

RNA decapping and fragmentation 100ng Poly(A)+ RNA was decapped with 

10U tobacco acid pyro-phosphatase (Epicentre, discontinued) with 40U RNAseOut 

(Invitrogen) for 90 minutes at 37°C in 10ul reaction volume. Decapped-RNA was 

brought up to a volume of 200ul in DEPC water and cleaned-up with a single 

phenol:chloroform:isoamyl alcohol extraction (PCIA, 25:25:1, Sigma) followed by 

chloroform extraction. RNA was precipitated with ethanol for 30 minutes on ice, pelleted 

and washed with 70% ethanol and resuspended in 16ul DEPC water. Decapped-RNA 

was fragmented for 6 minutes in 1x fragmentation buffer and fragmented RNA was 

ethanol precipitated as above and resuspended in 16ul DEPC water.  

Dephosphorylation of RNA fragments 3’ ends of fragmented RNA was 

dephosphorylated with 5U Antarctic phosphatase (NEB) with 40U RNAseOut in 1x 

phosphatase buffer for 30 minutes at 37°C in a 20ul reaction volume and the reaction 

stopped at 65°C for 5min. 5’ ends of fragmented RNA was phosphorylated by adding 
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20U of T4 polynucleotide kinase (NEB), PNK buffer, 40U RNAseOut, and 5ul 10nM ATP 

to 3’ dephosphorylated RNA for a total reaction volume of 50ul. RNA was 

phosphorylated at 37°C for 60 minutes. RNA was brought up to 100ul with DEPC water 

and RNA cleaned up with Rneasy MinElute Qiagen). 350ul RLT butter and 400ul 100% 

ethanol was added to RNA, mixing by pipetting after each addition, and added to 

MinElute column, discarding flow through. Column was washed with 500ul RPE. 

Column dried in fresh 2mL collection tube by spinning at full-speed for 5min with cap 

open. RNA was collected in 14ul DEPC water in an RNAse-free microfuge tube. 

Concentrated RNA to a total volume of 6ul in vacufuge.  

RNA adaptor ligation The phosphorylated RNA and the 3’ sRNA adaptor was 

denatured at 70°C for 2 min and then chilled the RNA on ice for 2 min. 300U T4 RNA 

ligase 2, truncated (NEB) with 20U RNAseOut, 0.8ul 100mM MgCl2, and T4 RNA ligase 

2 truncated reaction buffer was added to the RNA mix and incubated for 1 hour at 22°C. 

The 5’ was denatured at 70°C before being added to the 3’ ligated RNA with 1ul 10mM 

ATP, 1ul and T4 RNA ligase (NEB) and incubated at 20°C for 1 hour.  

First strand cDNA synthesis 3ul of the SRA reverse transcription primer was 

added to adaptor ligated RNA and RNA denatured at 70°C for 2 min. RNA was reverse 

transcribed with 600U SuperScript III (Invitrogen) with 30U SUPERase-In (Ambion), 6ul 

5x first-strand buffer, and 6ul 100mM DTT for 1 hour at 55°C. The RNA was then 

degraded with RNAse H for 1 hour at 37°C and RNAse deactivated at 75°C for 15 

minutes.  

Size selection The remaining cDNA was size selected on a denaturing poly-

acrylamide gel for 200-350bp fragments. The gel fragment containing the size-selected 
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cDNA was crushed and incubated in 500ul 300mM NaCl for 4 hours to overnight at 

room temperature. The liquid was separated from the gel in a 0.45um cellulose acetate 

column and cDNA precipitated with ethanol and resuspended in 10ul DEPC water. 

 PCR amplification The cDNA libraries were amplified with Phusion High-

Fidelity DNA polymerase (NEB) and indexing primers compatible with Illumina 

sequencing. After amplification, libraries were size selected on a non-denaturing 

polyacrylamide gel for 250-400bp fragments.  

3.3.4 RNA Sequencing Analysis 

The analysis of the RNA-sequencing libraries was performed by Amber Scott. 

RNA-seq libraries were sequenced on 1x50 flow cell on an Illumina HiSeq2000 

(University of Colorado). Libraries were sequenced to an average depth of 200M reads 

per strain. Adaptor sequences and low quality reads were trimmed with trimmomatic 

(v0.32 ILLUMINACLIP:TruSeq2-SE.fa:2:30:10 LEADING:3 TRAILING:3 

SLIDINGWINDOW:4:15 MINLEN:36) (Bolger et al. 2014). There was a considerable 

amount of ribosomal reads remaining, in order to remove ribosomal reads we first 

mapped the reads to a custom fasta file containing only the ribosomal gene region 

(chrXII:450486-459797) with Bowtie2 (v2.02, --sensitive-local) and all unmapped (non-

ribosomal reads) were output to an unmapped fastq file (Langmead and Salzberg 

2012). The resulting non-ribosomal reads were mapped to S. cerevisiae genome 

(R63.1.1, 2010-01-05) with Bowtie2 (v2.02, --sensitive-local) with the best mapping 

locations reported for each read (Engel et al. 2014). An average of 58M reads mapped 

(a 95% mapping rate on non-ribosomal) per strain. SAM files were converted to BAM 

with samtools v0.1.19 for downstream use (Li et al. 2009). Reads that mapped 
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unambiguously to transcripts were counted using HTSeq (v0.5.4p5, htseq-count -f bam 

-s yes -m intersection-strict -t gene -i ID) and the S288c R63-1-1 annotation file; an 

average of 44M reads per strain mapped to annotated genes.  

3.3.5 Differential Expression Analysis  

Differential expression analysis was performed by Amber Scott using DESeq 

v1.10.1 (Anders and Huber 2010). Since there were no biological replicates, the “blind” 

method was used to estimate dispersions. This uses all samples (strains) to determine 

the typical variance in expression for each gene. Given the sequenced strains are 

derived from the same parental strain and contain only a few mutations, we believe this 

is an acceptable method to estimate dispersions. Differential expression was 

determined for all evolved clones against the diploid ancestral strain. Genes were 

considered differentially expressed between two strains if their adjusted p-value was 

less than 0.05. Complete DESeq output files are included in GEO Accession 

#GSE95069.  

3.3.6 qRT-PCR analysis 

Amber Scott performed all qRT-PCR analysis. RNA was reverse transcribed 

using Multiscribe reverse transcriptase (Thermo Fisher #4311235) with random 

hexamers. cDNA was diluted to 1:100 and quantified using targeted qPCR primers 

(Supplementary Materials online) and SYBR select (Life Technologies #4472908) on 

the Biorad CFX qPCR system. A standard curve was used to determine linear range 

and efficiency of the primers. Gene expression was internally normalized to ACT1 

expression and error propagated for replicates. Unless otherwise noted, gene 

expression was measure in triplicate reactions for each of two biological duplicates. To 
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the best of our ability we attempted to process each or 100 evolved clones and 

ancestral strains at the same time to prevent variation within a biological replicate.  

3.3.7 Cluster analysis  

All clustering analysis was performed by Amber Scott on the log2-transformed 

qRT-PCR gene expression ratio between the evolved clones and the diploid ancestral 

strains internally normalized to ACT1 expression. Hierarchical clustering analysis was 

performed using the R (v3.3.2, 2016-10-31) hclust function with the “complete” 

clustering method. Linear discriminate analysis was performed using the lda function in 

the MASS package (v7.3-45). LDA was performed twice, classifying the strains by either 

adaptive mutation or by ancestral ploidy (1N, 2N, or 4N). 	
  

3.4 Conclusions 

In this chapter I determined the key adaptive pathways in the majority of the 

evolved clones using a panel of 5 genes that was determined to be diagnostic of the 

pathways of adaptation by RNA-sequencing analysis. I integrated the WGS variant 

calling with the gene panel expression profile to determine the identity of the adaptive 

mutations in all but 5 strains. Furthermore, I used the gene expression panel to 

accurately predict the adaptive mutation in 21 evolved clones for which there was not 

WGS available.  This is the first experimental evolution study to integrate whole genome 

sequencing with expression analysis to determine the adaptive pathways in a large 

number of clones isolated from independent populations.  The adaptive mutations 

identified encompass a narrow set of genes, however the higher ploidy strains gain a 

significantly different spectrum of mutations than haploid strains (Figure 3-10). 
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I observed frequent parallel adaption in replicate populations, both at the RNA 

expression level and through mutations in small subset of genes. Strains primarily adapt 

to growth in raffinose media by up-regulating the hexose transporters that are required 

to import glucose (or fructose) into the cell. The majority of strains either acquired 

mutations in glucose sensors or signal transducers that led to the over-expression of 

HXT2, HXT3, and HXT4 or amplified the HXT6/7 genomic region leading to the over-

expression of HXT6/7. Interestingly, gene expression patterns for all evolved clones 

cluster according to one key adaptive mutation that they carry, despite additional 

background mutations and underlying karyotype or ploidy level (Figure 3-8, Figure 

3-11). While I find that ploidy level itself is not a good predictor of the adaptive pathways 

(Figure 3-11), the tetraploid clones have increased genetic complexity relative to 

haploids and diploids, suggesting that in this relatively short evolutionary timescale 

polyploid cells explored more evolutionary innovations.  

Strains with mutations in SNF3 and MTH1, while discrete, are grouped closely 

together by LDA, indicating that they have a similar expression profile (Figure 3-11). 

Despite the apparent parallel adaptation in these strains at the gene expression level, 

the nature of the acquired mutations (MTH1 and SNF3) is drastically different. The 

dominance of a mutation is the key determinant of diploid and tetraploid fitness benefit 

and evolvability compared to haploid lineages (Otto and Whitton 2000; Gerstein et al. 

2011). Thus, differing levels of dominance and differing pleiotropic effects of mutations 

in MTH1 or SNF3 may affect on the long-term evolutionary outcomes in these strains. 

Additionally, amplifications of the HXT6/7 region occurred more often with 

increasing ploidy level. Unlike single nucleotide polymorphisms or indels, HXT6/7amp 
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copy number can change rapidly (Møller et al. 2015; Mishra and Whetstine 2016). The 

ability to rapidly respond to environmental changes in glucose concentration represents 

a significant advantage to strains that gained HXT6/7amp. Thus, the higher likelihood of 

acquiring HXT6/7amp in the 2Ne and 4Ne evolved populations compared to the 1Ne 

population represents a significant advantage to higher ploidy during adaptation.  

 While the majority of adaptive mutations occurred in genes with known roles in 

glucose uptake, I also recovered adaptive mutations in genes with no previously known 

to have a role in glucose uptake or metabolism (MOT3 and IPT1). Strains with 

mutations in these novel genes formed distinct clusters in HCA and LDA of the glucose 

response gene panel, suggesting that the mechanisms of adaption in these strains have 

some role in glucose uptake. Additionally, I found dominant mutations in the glucose 

signal transducers RGT1 and MTH1, previously thought to only acquire recessive 

mutations in glucose-limited environments. Further characterization of the adaptive 

mutations (Chapter 4) is required to fully understand the mechanisms of adaptation of 

yeast of different ploidy levels to growth in raffinose media.  
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4 CHARACTERIZATION OF ADAPTIVE MUTATIONS 

Portions of this chapter are published previously or are currently under review: 

1. Anna M. Selmecki, Yosef E. Maruvka, Phillip A. Richmond, Marie Guillet, Noam 

Shoresh, Amber L. Sorenson, Subhajyoti De, Roy Kishony, Franziska Michor, 

Robin Dowell & David Pellman. 2015. Polyploidy can drive rapid adaptation in 

yeast. Nature 519:349–352.  

2. Amber L Scott, Phillip A. Richmond, Robin Dowell, Anna M. Selmecki. The influence 

of polyploidy on the evolution of yeast grown in a sub-optimal carbon source. 

Under Review.  

Anna Selmecki constructed the SNF3 mutant strains and chromosome XIII aneuploid 

strains.  She also measured the relative fitness of these strains and the evolved clones, 

the results of which are summarized in this chapter. 

4.1 Introduction 

To date, experimental microbial evolution studies have focused on the rate of 

adaptation, the number of mutations acquired, and population dynamics with very little 

attention given to the nature of the particular mutations gained. In fact, so little attention 

is paid to the mutations themselves that studies have gone as far as to incorrectly 

assume the class (loss-of-function vs. gain-of-function) of specific mutations 

(Koschwanez et al. 2013; Kvitek and Sherlock 2013). This may be, in part, because the 

majority of experimental evolution studies have been conducted with haploid organisms. 

To fully understand the mechanisms of evolution, a deeper understanding of the nature 

of beneficial mutations is required. In this chapter I characterize the key adaptive 
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mutations recovered in our study. I give special attention to the impact of ploidy level of 

the relative frequency and beneficial effect of the mutations.   

The key adaptive mutations recovered in our study occur primarily in genes with 

a known role in glucose sensing and uptake; namely, glucose sensors, signal 

transducers, and glucose transporters. However, the nature of adaptive mutations in 

these genes is understudied. For a summary of glucose sensing and uptake in yeast 

see Chapter 1.8.  Here we explore the adaptive nature of a number of mutants 

recovered from our experimental evolution. I also characterize adaptive mutations 

recovered in genes with no canonical role in carbon utilization (IPT1 and MOT3). 

Finally, I examine the effect of chromosome XIII aneuploidy at differing ploidy levels.   

4.2 Results and Discussion 

4.2.1 Evolved clones exhibit dramatic fitness gains after 250 generations in 
raffinose media 

The ancestral clones exhibited dramatic fitness gains relative to the diploid 

ancestor after growth in raffinose media for 250 generations. To understand the impact 

of ploidy level and the specific adaptive mutations on fitness gains, we plotted the 

competitive fitness for each adaptive mutation in the 1Ne (Figure 4-1A), 2Ne (Figure 

4-1B), and 4Ne (Figure 4-1C) evolved clones. Competitive fitness was measured for 

each strain relative to the diploid ancestral strain. The 1N, 2N, and 4N ancestral strains 

had an average competitive fitness of 0.33, 0, and -1.68 relative to the diploid ancestor, 

respectively. While the 4Ne clones have the lowest competitive fitness after 250 

generations (Figure 4-1C), they made the largest fitness gains. Thus, tetraploids not 

only adapt more quickly than haploids and diploids, they also achieve greater fitness 
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gains. This suggests that polyploidization events may be a critical factor for improving 

evolutionary outcomes during adaptation to certain growth conditions. 

We further asked if the specific adaptive mutations impacted the relative fitness 

of the evolved clones. The levels of competitive fitness are largely the same among all 

evolved clones after 250 generations (Figure 4-1).  The one exception is 1Ne clones 

with mutations in MOT3 have significantly greater relative fitness than the 1Ne clones 

with mutations in MTH1. This is surprising given the relatively unknown role for MOT3 in 

adaptation to growth in carbon-limited media. The MOT3 mutations are examined in 

greater detail in Chapter 4.2.6. These data suggest that the fitness outcomes are 

independent of adaptive mutation, at least in raffinose media. However, the long-term 

benefit of particular mutations will depend on dominance level of the mutation and its 

pleiotropic (i.e. off-target) effects in changing environments (Adams and Rosenzweig 

2014; Bleuven and Landry 2016).   

Previous experimental evolutions studies of glucose- limited growth in 

chemostats (Figure 1-1) found evidence for clonal interference between clones in the 

population (Kao and Sherlock 2008). Clonal interference is the phenomenon in which 

independent beneficial mutations arise within large, usually asexual, populations and 

compete for resources. Competing beneficial mutations are theorized to slow the overall 

rate of evolution (Kao and Sherlock 2008). While we do not have evidence of clonal 

interference in our evolved populations, the relatively similar competitive fitness levels in 

the clones that harbor beneficial mutations in different genes suggest that clonal 

interference could indeed prevent the expansion of a particular lineage. However, head-
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to-head competitions between strains with differing beneficial mutations are necessary 

to fully understand the contribution of clonal interference to the rate of adaptation.   

 

 
 

 
Figure 4-1 Evolved clones exhibit increased fitness in raffinose media. Competitive 
fitness of the evolved clones isolated from A) 1Ne, B) 2Ne, C) and 4Ne populations. 
Competitive fitness (Y-axis) is relative to the diploid ancestral strain. The evolved clones 
are separated by primary adaptive mutation (X-axis). The dashed lines indicated 
starting fitness of the ancestral 1N (red), 2N (blue), and 4N (green) strains. 1Ne clones 
with mutations in MOT3 have significantly greater competitive fitness than the 1Ne 
clones with mutations in MTH1, paired student t-test. Figure and legend from (Scott et. 
al. 2017).  
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4.2.2 Activating mutations in the glucose sensors, Snf3p and Rgt2p 

Two closely related glucose sensors, Snf3p and Rgt2p, signal through 

downstream proteins to activate expression of the HXT genes in conditions of low and 

high extracellular glucose levels, respectively (Figure 1-3)(Sabina and Johnston 2009). 

SNF3 was the most commonly mutated gene in the evolved clones. Mutations in SNF3 

were most often found in the 2Ne strains (18 of 24) followed by 4Ne strains (10 of 28) 

but only rarely found in the 1Ne (3 of 24) (Table 9-1). A small number of strains harbor 

mutations in RGT2: 1 of 24 in 2Ne clones and 2 of 28 in 4Ne clones (Table 9-1). 

Raffinose acts as a source of low glucose; therefore it makes sense that there is a lower 

frequency of mutations in the high glucose sensor Rgt2p than in the low glucose sensor 

Snf3p. 

Strains with mutations in these sensors clustered into multiple clades within the 

gene panel dendrogram (Figure 3-8). The strains with mutations in the gene encoding 

the glucose sensor Snf3p grouped within clades a, b, and c and vary in their levels of 

expression of HXT2, HXT3 and HXT4. Strains in clade a show robust overexpression of 

HXT3 and HXT4, while strains in clade b have moderate overexpression of HXT3 and 

high expression of HXT4. Clade c is characterized by minimal up regulation of HXT3 

and HXT4, and down regulation of HXT2. The strains with mutations in RGT2 are 

primarily found in clade d and have only minimal over expression of HXT3 and HXT4 

when compared to the diploid ancestor. These expression patterns are consistent with 

the activation of glucose responsive signaling through Snf3p or Rgt2p. Moreover, 

evolved clones with SNF3 mutations exhibit glucose independent activation of the 

hexose transporters (Figure 4-2) (Pasula et al. 2007).   
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Figure 4-2 Mutations in SNF3 result in constitutive activation of glucose 
responsive genes. qRT-PCR expression analysis of glucose responsive genes 
normalized to ACT1 for selected evolved clones with mutations in SNF3 relative to the 
diploid ancestral strain. Strains were grown 0.1% glucose overnight and then grown in 
A) 2% Galactose, B) 0.1% Glucose, and C) 2% Glucose for 6 hours or until cultures 
reached an OD of 0.8. Figure and legend from (Scott et. al. 2017). 
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Figure 4-3 Dominant mutations in the glucose sensors, Snf3 and Rgt2, were 
found in evolved clones derived from each ploidy. Diagram of Snf3 (blue) and Rgt2 
(light blue, italic) amino-acid substitutions that resulted from single nucleotide variations 
recovered in the evolved clones. The locations of transmembrane, cytosolic, and 
extracellular domains were predicted with TMHMM 2.0c (Krogh et al. 2001). Figure and 
legend from (Scott et. al. 2017). 
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The different clusters formed by SNF3 mutants in the gene panel dendrogram 

are indicative of varying levels of downstream activation: high (clade a), medium (clade 

b), and low (clade c). We hypothesized that the level of activation may be a result of the 

location and identity of the mutation in Snf3p. To test this, we diagramed the locations of 

the mutations in Snf3p (Figure 4-3).  In general, mutations with high activation were 

located in transmembrane domains 8, 10, and 11, near the cytoplasmic domains. 

Mutations in strains that cluster with low activation are located in the extracellular and 

cytoplasmic loops. Other possible factors may contribute to downstream activation, 

such as other background mutations or underlying karyotype. Further tests are required 

to elucidate the exact mechanisms of varying levels of Snf3p signal activation.  

To test the impact of SNF3 mutations at different ploidy levels, in the absence of 

other background mutations, we constructed isogenic SNF3-G439E strains differing 

only by ploidy. We found that SNF3–G439E had a dominant, raffinose-specific, 

beneficial effect that was relatively stronger in the 4N strain (Figure 4-4; t-test, p<1x10-

4). We measured the expression of the glucose responsive gene panel (Table 3-1) in 

the SNF3-G439E ploidy series. These strains exhibit an expression signature similar to 

the evolved clones harboring mutations in SNF3, confirming that the gene expression 

pattern is a result of the mutations in SNF3 (Figure 4-5).  Moreover, the extent of HXT 

overexpression may be mediated by the ratio of mutant alleles to wildtype alleles: the 

haploid and homozygous diploid SNF3–G439E strains have increased HXT2-4 

expression (Figure 4-5) relative to the diploid ancestor. Together, these data suggest 

that underlying karyotype may modulate the beneficial effect of SNF3 mutations.    
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Figure 4-4 Mutations in SNF3 provide a raffinose specific fitness benefit. 
Competitive fitness of engineered isogenic strains of the indicated ploidy and genotype, 
relative to the corresponding ploidy ancestor, in A) raffinose and D) glucose medium. 
Error bars, mean +/- SEM of three independent SNF3–G439E transformants of each 
ploidy type, t-test ***p<1x10-4. Figure and legend from (Selmecki et al. 2015). 
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Figure 4-5 SNF3 mutant copy number impacts HXT expression. Expression of the 
glucose responsive gene panel in engineered isogenic strains of the indicated ploidy 
and genotype, relative to the diploid ancestor. RT-qPCR expression values are 
internally normalized to ACT1. Y-axis is in Log2 scale, n=3, error bars represent SEM.  
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One determinant of long-term evolutionary success is ability to adapt to changing 

environments. Mutations that may be beneficial to growth in raffinose may show trade-

offs in other carbon environments (Wenger et al. 2011; Adams and Rosenzweig 2014; 

Bleuven and Landry 2016). SNF3–G439E mutations show a slight decrease in fitness 

when grown in rich media (Figure 4-4). Moreover, the mutations recovered in SNF3 

increase downstream signaling to levels above and beyond the levels evolved in the 

ancestral strain. This suggests that natural selection restricted the signaling capabilities 

of Snf3p, indicating that increased activation of the glucose responsive genes may be 

selected against in typical growth conditions or the changing environments in which 

yeast evolved. A similar effect was discovered on the gene SFA1, mutations of which 

increased resistance to formaldehyde (Zhang et al. 2013).  

4.2.3 Recessive and dominant mutations in the signal transducer, Mth1 

Under repressing conditions, Mth1p binds Rgt1p at the promoters of glucose 

inducible genes, repressing transcription though Ssn6p/Tup1p (Kim et al. 2003; Polish 

et al. 2005; Roy et al. 2013).  However, in the presence of low extracellular glucose or 

fructose concentrations, Snf3p signals the degradation of Mth1p (H Liang and Gaber 

1996; Lafuente et al. 2000; Flick et al. 2003). This results in Rgt1p phosphorylation and 

the de-repression of glucose inducible genes (Polish et al. 2005; Pasula et al. 2010).   

Several of the evolved clones have mutations in the signal transducer MTH1 

(Table 9-1). With one exception, these clones all cluster together as a sub-clade within 

clade b (Figure 3-8), consistent with the fact that Snf3p signals downstream for the 

degradation of Mth1p to relieve the repression of the hexose transporters.  These 

strains all moderately overexpress HXT3 and highly overexpress HXT4. The major 
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outlier is the 4Ne clone 327, which harbors a dominant mutation in MTH1 and clusters 

in clade c. This dominant MTH1 mutation results in a heterozygous C321F substitution 

(Figure 4-6, Table 4-1). This strain has a different expression profile than the other 

MTH1 mutant strains, suggesting that this mutation may not fully abolish MTH1 function. 

While, dominant non-degradable MTH1 mutants that result in constitutive repression of 

the hexose transporters have been previously described (Schulte et al. 2000), this 

mutation is the first known dominant activating mutation in MTH1.  

 

 
Mutation Background Strain Experimental details Citation 
H154Tfs W303 (1N) EvoClone2 1mM Sucrose, serial passage, POL3-

L523D mutant 
Koschwanez et al. 
2013 

S51Ifs W303 (1N) EvoClone6 1mM Sucrose, serial passage, POL3-
L523D mutant 

Koschwanez et al. 
2013 

W427C S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Q416K S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Y332Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

C321W S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Y311Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Y245Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Q236Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

L156Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

S106Stop S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

N314H S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

R385Stop S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

E249Stop S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

C188Stop S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

S101Stop S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

K86Stop S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 
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Q374Stop S288C (1N) E3, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

Q338Stop S288C (1N) E3, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

L241Stop S288C (1N) E3, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

S209Stop S288C (1N) E3, Bulk 0.08% Glucose, Chemostat, 448 
generations 

Kvitek and 
Sherlock 2013 

1353fs S288C (1N) 102 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 104 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

N12fs S288C (1N) 105 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 106 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 108 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

K333Stop S288C (1N) 109 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

N69fs S288C (1N) 110 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

K367fs S288C (1N) 111 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

S133fs S288C (1N) 112 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 116 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 122 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 124 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

A475D S288C (1N) 127 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 128 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 131 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

C321F S288C (4N) 327 2% Raffinose, serial passage, 250 
generations 

Selmecki et. al. 
2015 

1353fs S288C (1N) 115 2% Raffinose, serial passage, 250 
generations 

Scott et. al. 2017 

1353fs S288C (1N) 119 2% Raffinose, serial passage, 250 
generations 

Scott et. al. 2017 

S133fs S288C (1N) 126 2% Raffinose, serial passage, 250 
generations 

Scott et. al. 2017 

Table 4-1 MTH1 mutations recovered from experimentally evolved yeast 
populations under carbon stress. 
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Figure 4-6 Dominant and recessive mutations have been recovered in MTH1 in 
glucose-limited growth conditions. Diagram of published mutations in MTH1. The 
type of mutation is indicated by color: frameshift (red), nonsense (green), and non-
synonymous (purple). Known ubiquitiation (white, circle) and phosphorylation (yellow, 
hexagon) are also indicated. Figure and legend adapted from (Scott et. al. 2017). 

 

 
Figure 4-7 MTH1-C321F induces glucose independent expression of glucose 
responsive genes. qRT-PCR gene expression analysis of  glucose responsive genes 
relative to ACT1 expression and normalized to the 4N ancestral strain grown in 2% 
galactose. n=2, error bars represent SEM. Figure and legend adapted from (Scott et. al. 
2017). 
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When grown in media with galactose as the sole source of carbon, 4Ne clone 327 

exhibits glucose independent activation of genes that are typically repressed by Rgt1p 

in glucose-free conditions (Figure 4-7) (Ozcan and Johnston 1995). This suggests that a 

single copy of mutant Mth1p is acting ether as a dominant negative, by preventing 

wildtype Mth1p from binding Rgt1p, or more likely preventing proper function of Rgt1p. 

Mth1pC321F may prevent proper Rgt1p function in two ways: by preventing Rgt1p binding 

at the promoters of the glucose responsive genes or preventing recruitment of the 

repressive complex Ssn6p/Tup1p to the promoters of glucose responsive genes. It has 

been reported that recruitment of Ssn6p/Tup1p is required for the release of Rgt1p from 

binding the HXT1 promoter and the interaction of Rgt1p and Ssn6p/Tup1p is mediated 

by Mth1p (Roy et al. 2013; Roy et al. 2014). Thus, I hypothesize that Mth1pC321F 

disrupts the interaction between Rgt1p and Ssn6p/Tup1p, both preventing repression of 

the glucose responsive genes and causing non-reversible binding of Rgt1p/Mth1pC321F 

at the promoters of glucose responsive genes. However, functional studies of the 

MTH1-C321F mutation are required to elucidate the effect of the mutations on glucose 

responsive gene regulation.  

4.2.4 A novel dominant mutation in the transcriptional repressor, Rgt1p 

We sequenced a single evolved clone with a mutation in the negative regulator of 

glucose responsive gene expression, RGT1 (Table 9-1). This strain, 4Ne clone 324, 

clusters with the MTH1 mutants in cluster b (Figure 3-8). The clustering of this strain in 

clade b is consistent with loss of Rgt1p function in repression of the glucose responsive 

genes, yet this mutation occurs in only 1 of 2 alleles of a tetraploid evolved strain. 

Importantly, it has been previously reported that loss of a single RGT1 allele does not 
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result in haploinsufficiency (Dietzel et al. 2012). The dominant mutation that we 

recovered (rgt1S509stop/RGT1) leads to the dominant activation HXT2 and HXT4 in 

galactose (Figure 4-10).  

The location of the dominant mutation is intriguing, as it results in a heterozygous 

truncation of the domain of Rgt1p (Figure 4-8, asterisk, Table 4-2) previously described 

as an inhibitor of repression (Polish et al. 2005).  This domain is thought to function as a 

self-inhibiter of the DNA binding domain of Rgt1p. Thus, we would expect that loss of 

this region would result in constitutive binding of Rgt1p and, as a result, constitutive 

repression. However, we see the opposite effect, the expression profile of 

rgt1S509stop/RGT1 phenocopies loss of MTH1. Previous experimental evolution studies 

on haploid yeast populations in glucose-limiting conditions recover mutations in RGT1 

that are presumed to be LOF (Koschwanez et al. 2013; Kvitek and Sherlock 2013).  

However, the reported mutations within RGT1 were located in the same inhibitor of 

repression domain (Figure 4-8), suggesting they were unlikely LOF. 

Since we did not recover haploid LOF mutations in RGT1, we hypothesized that 

loss of Rgt1p would be detrimental to growth in raffinose.  To test this, we deleted RGT1 

in the haploid ancestral strain. Multiple rgt1Δ clones displayed a growth defect on 

raffinose compared to the 4Ne clones 324 (Figure 4-9B). We did not observe a 

difference in growth for rgt1Δ strains compared to the haploid ancestor in raffinose or 

glucose (Figure 4-9). These results suggest that the rgt1S509stop/RGT1 mutation in 4Ne 

clone 324, as well as mutations in RGT1 described in other studies, do not fully abolish 

Rgt1p function. Instead, these mutations may affect association with co-regulators, such 

as Mth1p.  
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Mutation Background Strain Expermintal details Citation 
L832fs W303 (1N) EvoClone4 1mM Sucrose, serial passage, 

POL3-L523D mutant 
Koschwanez et al. 
2013 

Q1053Stop W303 (1N) EvoClone1 1mM Sucrose, serial passage, 
POL3-L523D mutant 

Koschwanez et al. 
2013 

G687V W303 (1N) EvoClone1
0 

1mM Sucrose, serial passage, 
POL3-L523D mutant 

Koschwanez et al. 
2013 

Y526C S288C (1N) E1, Bulk  0.08% Glucose, Chemostat, 
448 generations 

Kvitek and Sherlock 
pgen 2013 

V565L S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 
448 generations 

Kvitek and Sherlock 
2013 

L575W S288C (1N) E1, Bulk 0.08% Glucose, Chemostat, 
448 generations 

Kvitek and Sherlock 
2013 

C646F S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 
448 generations 

Kvitek and Sherlock 
2013 

E817K S288C (1N) E2, Bulk 0.08% Glucose, Chemostat, 
448 generations 

Kvitek and Sherlock 
2013 

S509Stop S288C (4N) 324 2% Raffinose, serial passage, 
250 generations 

Selmecki et al. Nature 
2015 

Table 4-2 RGT1 mutations recovered from experimentally evolved yeast 
populations under carbon stress. 

 

 
 

Figure 4-8 Diagram of published mutations in RGT1. The type of mutation is 
indicated by color: frameshift (red), nonsense (green), and non-synonymous (purple). 
Known ubiquitiation (white, circle) and phosphorylation (yellow, hexagon) are also 
indicated. Figure and legend adapted from (Scott et. al. 2017). 
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Figure 4-9 rgt1Δ mutants exhibit poor growth on raffinose media. Spot assay for 
rgt1Δ strains grown on synthetic complete agar plates containing either A) 2% glucose 
or B) 2% raffinose as the sole carbon source. Figure and legend adapted from (Scott et. 
al. 2017). 

 

Figure 4-10 RGT1-S509stop induces glucose independent expression of HXT2 
and HXT4. qRT-PCR gene expression analysis of  glucose responsive genes relative to 
ACT1 expression and normalized to the 4N ancestral strain grown in 2% galactose. 
n=2, error bars represent SEM. Figure and legend adapted from (Scott et. al. 2017). 
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4.2.5 HXT6/7 amplification is more common at higher ploidy levels 

Amplification of HXT6/7 is a prominent pathway of adaptation to growth in 

glucose limiting conditions and we showed that HXT6/7amp is more common with 

increasing ploidy (Figure 3-10) (Brown et al. 1998; Kao and Sherlock 2008; Kvitek and 

Sherlock 2011; Sellis et al. 2016). Only a single haploid in our study gained HXT6/7amp, 

whereas other studies that adapted haploid yeast to growth in low-glucose conditions 

regularly recovered HXT6/7amp mutants. This difference may be due to differences in 

culture conditions within our study.  The majority of strains harboring HXT6/7amp cluster 

together in clade e of the gene panel dendrogram. The two exceptions are 2Ne clone 

207 and 1Ne clone 132, which also have mutations in SNF3 and IPT1, respectively. 

Strains in clade e overexpress HXT6/7 while down regulating the other hexose 

transporters (Figure 3-8). These strains also have reduced levels of the invertase SUC2 

compared to the diploid ancestor.  This is surprising, given that Suc2p is required for the 

cells to metabolize raffinose. 

Remarkably, we found that strains with HXT6/7amp gained fewer mutations overall 

in the diploids (p=1.92x10-3, paired student t-test) and tetraploids (p=0.13, not 

significant, paired student t-test) compared to strains with mutations in other genes, 

when adjusted for haploid genome content (Figure 4-11A).  Despite the fact that 

tetraploid strains frequently underwent chromosome loss, and in some cases 

chromosomal gain, during adaptation to growth in raffinose (Chapter 2.2.1), strains that 

had HXT6/7amp largely remained 4N. We compared propidium iodide staining between 

the strains with HXT6/7amp to strains with other adaptive mutations and found that the 

HXT6/7amp strains had significantly more DNA than the SNF3 mutants  (p=2.96x10-3, 
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paired student t-test) and other mutants (p=6.34x10-5, pair student t-test)(Figure 4-11B).  

These data suggest that amplification of the HXT6/7 region has a genome stabilizing 

effect, potentially through reducing stress in the evolved clones (Chen et al. 2012; 

Oromendia et al. 2012; Shor et al. 2013). Further studies are required to understand the 

mechanisms of apparent genome stability in these strains.  

 

 

 
 
Figure 4-11 Evolved clones with amplification of the HXT6/7 region gain fewer 
mutations and remain primarily tetraploid. A) The average number of mutations per 
strain in the 2Ne clones and 4Ne clones with HXT6/7amp (white) or without HXT6/7amp 
(grey). The number of mutations per strain is adjusted for haploid genome content. The 
2Ne clones with HXT6/7amp have significantly fewer mutations per strains than the 
clones with only a single copy of HXT6 and HXT7 (p=1.92x10-3, paired student t-test). 
B) Haploid genome content (Y-axis), determined by mean G1 fluorescence, of tetraploid 
evolved clones with HXT6/7 amplifications, SNF3 mutations, or other mutations. Clones 
with HXT6/7amp have a significantly larger haploid genome content than SNF3 mutants 
(p=2.96x10-3, paired student t-test) and clones with other mutations (p=6.34x10-5, paired 
student t-test). There is no significant difference between clones with mutations in SNF3 
compared to clones with mutations in other genes. 
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4.2.6 Novel mutations in IPT1 and MOT3 improve fitness in raffinose media  

The evolved haploid clones 103, 117, and 132 each gained unique non-

synonymous or nonsense mutations in IPT1. Ipt1p, an inositolphosphotransferase, is 

the final step in the biosynthesis of complex sphingolipids, loss of which has been 

shown to improve antifungal drug resistance (Dickson et al. 1997; Hallstrom et al. 

2001). It is improbable that the multiple mutations would occur in IPT1 by chance 

(p=6.2x10-6, exact binomial test), suggesting that mutations in IPT1 are adaptive and 

under positive selection. The IPT1 mutant strains slightly up-regulate HXT3 and HXT4 

and cluster together in clade d (Figure 3-8).  In a recent study that examined the fitness 

of gene deletions in several environments, loss of IPT1 was predicted to have fitness 

benefits in low-glucose and low-sulfate conditions (Payen et al. 2016). However, ours is 

the first to report mutations in IPT1 recovered from an experimental evolution.  

Similarly, multiple clones (n=3) harbor mutations in MOT3, a transcription factor 

that has been shown to modulate the transcription of a wide range of genes, including 

ergosterol biosynthetic genes and glucose transporters (Grishin et al. 1998; Hongay et 

al. 2002). Overexpression of MOT3 was shown to increase the transcription of HXT2, 

HXT3, HXT4, and SUC2 (Grishin et al. 1998). As with IPT1, multiple hits in MOT3 are 

unlikely to occur by chance (p=5.0x10-6, exact bionomial test). The 1Ne clones 113, 

114, and 120 have distinct frameshift (P268fs) and nonsense (R357Stop, K394Stop) 

mutations in MOT3 (Table 9-1). These strains cluster together in clade e, adjacent to 

strains with HXT6/7amp and are characterized by up-regulation of HXT3 and HXT6/7 and 

down regulation of HXT2, HXT4, and SUC2 (Figure 3-8). 
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In carbon limited environments, Mot3p forms a prion protein that represses 

Mot3p activity and the prion [MOT3+] functions to prime yeast cells for growth in low-

carbon environments by switching from fermentative to oxidative metabolism and 

producing a FLO11-induced multicellular phenotype in some lineages (Holmes et al. 

2013). However, our background strain (S288c) does not express FLO11, thus it is 

unclear what role [MOT3+] has in adaptation to growth in raffinose (Liu et al. 1996). The 

evolved clones with mutations in MOT3 do not show evidence of prion formation by 

growth on glycerol glucosamine medium or multicellularity phenotypes (data not shown) 

(Halfmann et al. 2012; Holmes et al. 2013). Thus, it is unlikely that the MOT3 mutants 

are adapting through prion formation.  

Despite the unknown role of Ipt1p and Mot3p in adaptation to growth in raffinose, 

these strains exhibit high levels of competitive fitness compared to the diploid ancestor 

(Figure 4-1). One commonality between Ipt1p and Mot3p is they both function in the 

biosynthesis of plasma membrane constituents, specifically sphingolipids and 

ergosterol, respectively. This suggests that one mode of adaptation to nutrient limitation 

involves altering the plasma membrane or the endocytic pathway, including improved 

membrane organization, trafficking, recycling, and/or retention of the hexose 

transporters at the cell surface. In support of this, adaptive mutations were recently 

identified in genes encoding components of the endocytic pathway (including FAB1 and 

VAC14) in yeast that had adapted to nitrogen limitation (Hong and Gresham 2014). 

These data support that a limiting factor for growth under nutrient limitation is the 

recycling or physical packing of membrane transporters at the cell surface (Mable 2001; 

Krogerus et al. 2016).  
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4.2.7 Chromosome XIII aneuploidy 

As discussed in Chapter 2.2.1, aneuploidy of chromosome XIII occurred 

significantly more often than any other chromosome (Figure 2-6). Specific aneuploidies 

have been shown to be beneficial in certain growth conditions (Selmecki et al. 2006; 

Rancati et al. 2008; Chen et al. 2012; Mulla et al. 2014). However, due to other 

background mutations in the evolved clones isolated in our study, we cannot determine 

the specific beneficial effects of chromosome XIII aneuploidy in raffinose media. Thus, 

to test whether chromosome XIII gain contributed directly to the rapid adaptation of 4N 

cells, we generated isogenic 2N and 4N strains, with and without an extra copy of 

chromosome XIII.  

The increased copy number of chromosome XIII provided a significant fitness 

increase to 4N strains in raffinose medium relative to the 2N ancestor (Figure 4-12A; t-

test, p<1x10-4) and there was no fitness benefit to chromosome XIII aneuploidy when 

grown in glucose (Figure 4-12B). This was not a general effect of aneuploidy because 

the gain of a different chromosome, chromosome XII, had the opposite effect on fitness 

(Figure 4-12A). In striking contrast to 4N cells, chromosome XIII trisomy was not 

beneficial to 2N strains in raffinose medium and decreased fitness of 2N cells in 

glucose. To our knowledge, this is the first observation of a ploidy-specific fitness 

advantage for an aneuploid chromosome. Thus, aneuploidy, acquired through high 

rates of mitotic errors, is one way that 4N cells can acquire more beneficial mutations 

with higher fitness effects.  
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Figure 4-12 Chromosome XIII aneuploidy confers a raffinose specific benefit in 
tetraploid yeast. Gain of chromosome (chr.) XIII is beneficial to tetraploid cells grown in 
raffinose medium but not for diploids. Shown is the fitness of isogenic wild-type 2N and 
4N strains, with or without chromosome XIII gain, relative to the 2N ancestor in A) 
raffinose or B) glucose medium. Error bars, mean +/- SEM of four individual clones and 
two or three technical replicates. Figure and legend adapted from (Selmecki et al. 
2015). 
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4.3 Materials and Methods 

4.3.1 Relative Fitness Assay 

Anna Selmecki conducted the competitive fitness assays.  Competitive fitness 

assays were performed using single colony isolates from the evolved populations and 

the diploid ancestral strain. One single colony was isolated from frozen stocks of each 

well of the evolution experiments (1N(A), 1N(B), 2N(A), 2N(B), 4N(A), 4N(B), 4N(C)) at 

generation 250. The evolved clones were cultured for 24h in 500 ml of Synthetic 

Complete + 2% raffinose, diluted into fresh medium, and competed with the ancestor 

expressing the complementary fluorescent protein. Competitions were initially 

performed using approximately the same number of cells from the ancestor and the 

evolved clone, but because the evolved clones grew significantly faster than the 

ancestor strains, the competitions were repeated using approximately five times more 

ancestor cells than evolved clone cells, with an initial population size of 1x105. Serial 

dilutions were performed each day and the YFP:CFP ratio was determined by flow 

cytometry, yielding an estimate of the number of evolved (Nt1) cells relative to the 

ancestors (Nt0) as a function of time. The data were analyzed in Matlab using a custom 

script that performed a linear least-squares fit of log(Nt1/Nt0) over multiple dilution 

cycles. The fitness relative to the ancestor is defined as s 5 d/dt [log2(Nt1/Nt0)], where t is 

measured in days (Hegreness 2006).  

4.3.2 Strain construction 

SNF3 mutant ploidy series. The SNF3–G439E mutation was constructed by 

Anna Selmecki in the haploid YFP strain back- ground (PY5999) using the pCORE 

counter-selectable reporter system (Storici et al. 2001), a gift from M. Resnick. Primers 
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SNF3_pCORE_KAN (5’-

TGTTGGGGGTGTTATCATGACTATAGCCAACTTTATTGTGGCCATTGTTGGGAGCT

CGTTTTCGACACTGG-3’) and SNF3_pCORE_URA (5’-

TATAAATGCTATCATAACTTTTGCGGCCGCTACAGTCTTTAAGGAACACTCCTTACC

ATTAAGTTGATC-3’) were designed to integrate the CORE sequence at the SNF3 

locus; PCR amplification and transformation procedures were followed as detailed 

previously (Storici and Resnick 2006). Sanger sequencing was used to identify clones 

with the desired mutation (chromosome IV: 112,896 G->A). Diploid SNF3–G439E 

mutants (heterozygous SNF3–G439E/SNF3 and homozygous SNF3–G439E/SNF3–

G439E clones) were constructed by mating after introduction of plasmids to confer 

mating competence (PB2649 or PB2647), as described in Chapter 8.1 for the 

construction of the CFP- and YFP-marked strains. An analogous strategy was used to 

generate tetraploid SNF3–G439E strains (heterozygous SNF3– 

G439E/SNF3/SNF3/SNF3).  

Chromosome XIII ploidy series. The chromosome XIII aneuploid strain series 

was constructed by Anna Selmecki in the S288c background from the diploid strain 

PY7295 (RL4737) and the diploid PY7296 (RL4888), which is trisomic for chromosome 

XIII (Pavelka, Rancati, Zhu, et al. 2010). PY7296 was isolated from a triploid meiosis 

and a minimal number of cell divisions (Pavelka, Rancati, Zhu, et al. 2010). We 

confirmed the chromosome XIII trisomy by aCGH. We generated tetraploid clones by 

mating PY7295 to PY7296, with changes in mating-type accomplished as described 

previously (Storchová et al. 2006). Tetraploid clones were isolated on selective media 

and analyzed by flow cytometry and aCGH.  
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Rgt1 deletion strains. The rgt1Δ strain was produced by Amber Scott by 

replacing the entire RGT1 ORF in the 5999 (1N) ancestral strain with the pCORE 

cassette (Storici et al. 2001). Transformants carrying the pCORE cassette were 

selected on YPD+200μ g/mL G418 (GoldBio), and 4 clones were selected for 

confirmation. The rgt1Δ clones were grown to saturation in YPD+G418 and confirmed 

with PCR of RGT1 region. A complete list of primers can be found in the Chapter 14. 

4.3.3 Growth Conditions and Spot Assay 

For glucose independent gene expression, cultures were grown to saturation in 

SC+2% raffinose media, cells were then diluted to 0.2 OD in SC+2% galactose and 

harvested after growth for 6 hours at 30°C. Spot assays were performed by growing 

strains to saturation in YPD or the corresponding selective media for rgt1Δ (YPD + 

200µg/mL G418) or 4Ne-324 (SC+2% raffinose).  Cells were washed and resuspended 

in water to a density of 1 ODU/ml. Cells were 10-fold serially diluted in water and 10ul 

was spotted on SC plates containing either 2% glucose or 2% raffinose. Plates were 

incubated at 30°C for 72 hours before photographing. 

4.3.4 Expression analysis 

RNA isolation, cDNA synthesis, and qRT-PCR was performed as described in 

Chapter 3.3. A list of qPCR primers can be found in Table 14-1. 
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4.4 Conclusions 

To fully understand how organisms adapt to new or stressful growth 

environments, a detailed understanding of the ways in which evolution can act on the 

molecular level is critical. While previous studies have recovered adaptive mutations in 

some of the genes I characterize here, those studies largely ignored the effect of the 

individual mutations on gene function, organismal fitness and gene expression 

(Gresham et al. 2008; Kao and Sherlock 2008; Koschwanez et al. 2013; Kvitek and 

Sherlock 2013). In one study, mutations in SNF3 were described as “non-tolerated 

missense mutations” (Kvitek and Sherlock 2013). However, as I demonstrated, 

mutations in SNF3 result in constitutive de-repression of the hexose transporters. 

Similarly, multiple studies have reported loss-of-function mutations in RGT1 

(Koschwanez et al. 2013; Kvitek and Sherlock 2013), yet I show that there is no benefit 

to loss of RGT1 in glucose-limited growth and the mutations previously reported in 

RGT1 are all located in the same “inhibitor of repression” domain, strongly suggesting 

that these mutations may, in fact, be dominant.  

In this chapter, I characterized mutations recovered at all ploidy levels. We found 

novel mutations in haploid populations in IPT1 and MOT3 that suggest these genes 

may have a previously unknown role in the glucose pathway. We hypothesize that 

adaptation through mutations in IPT1 and MOT3 maybe alter the composition of cell 

wall constituents, such as glucose transporters, though the endocytic pathway. We also 

discover novel dominant mutations in RGT1 and MTH1 in tetraploid evolved 

populations.  Additionally, chromosome XIII aneuploidy is the first example of a 

polyploid specific beneficial mutation, as it was only beneficial in the tetraploid 
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background in raffinose. On the other hand, constitutive activating mutations in the 

glucose sensors SNF3 and RGT1 were found all ploidy levels. HXT6/7amp was also 

discovered at all ploidy levels, but increased in frequency with increasing ploidy level. 

Surprisingly, HXT6/7amp strains exhibit fewer mutations and larger genome size, 

consistent with increased genome stability. Thus, using organisms of multiple ploidy 

levels in our studies allowed us to discover novel dominant mutations and fully 

characterize the effects of individual mutations at ploidy levels relevant to nature (Otto 

2007).      
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5 CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Summary 

This study is the first of its kind to integrate both gene expression and whole 

genome sequencing on a large scale, particularly with different levels of cellular ploidy. 

Whole genome sequencing with variant calling was performed on over 100 evolved 

clones isolated from individual evolving populations. We measured the expression 

profiles of genes shown to be indicative of adaptation to growth in raffinose media in 

each evolved clone. For the majority of the evolved clones, we further determined the 

specific adaptive mutation responsible for the expression profile. Finally, we measured 

the relative fitness gains for each evolved clone in raffinose media. This is the first study 

to quantify and describe genome variants, measure gene expression and estimate 

fitness in haploid, diploid and, in particular, tetraploid evolved clones.  

 

 
Figure 5-1 Graphical summary of pathways of adaptation for haploid, diploid, and 
tetraploid yeast to growth in raffinose media. Cartoon depicting the differing 
pathways to adaptation to long-term growth in raffinose media by the A) haploid, B) 
diploid, and C) tetraploid evolved clones. Non-synonymous mutations, such as SNF3, 
are represented by the blue path. Copy number variations, such as HXT6/7amp, are 
represented by the green path. Recessive mutations, such as MTH1, are represented 
by the red path. Aneuploidy, only observed in the 4Ne populations, is represented by 
the white pathway. The hiker signifies the commonly utilized pathways in the clones at 
each ploidy level. Artwork courtesy of David Deen. Figure and legend from (Scott et. al. 
2017) 
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We find that underlying ploidy level has a major effect on the spectrum of 

mutations gained during adaptation. The observed difference in types of mutations 

acquired by the evolved clones is reflected in the different pathways of adaptation to 

growth in raffinose (Figure 5-1). Not all pathways of adaptation are available to strains 

from different ploidy level backgrounds. For example, the most common pathway of 

adaptation in the evolved haploid clones is through recessive mutation, which is 

inaccessible in the diploids and tetraploids. Similarly, adaptation through aneuploidy 

occurred exclusively in the evolved tetraploids, as previously described (Selmecki et al. 

2015). While copy number variation is rare in the haploid evolved clones, it is more 

accessible with increasing ploidy level (Gresham et al. 2008; Sellis et al. 2016). Some 

adaptive routes are open to all ploidy levels: we see non-synonymous mutations in the 

glucose sensors in haploid, diploid, and tetraploid evolved clones. This study 

demonstrates the adaptive potential of higher ploidy organisms during evolution and 

shows that different evolutionary outcomes arise as a result of ploidy level (Schoustra et 

al. 2007).  

Historically, experimental microbial evolution studies were performed exclusively 

in haploid organisms, and in more recent years diploid organisms. This study 

establishes that using a range of ploidy levels in evolution experiments is necessary to 

fully understand the mechanisms of evolution, given the prevalence of whole genome 

duplication events throughout evolutionary history. Utilizing a range of ploidy levels in 

our study allowed us to identify novel mutations, especially mutations that are 

physiologically relevant to diploids and polyploid organisms.  
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5.2 Major Scientific Contributions 

In this study we demonstrate that polyploidy may drive rapid adaptation in yeast 

by various mechanisms. We show that polyploidy increases the genetic diversity of the 

evolving populations. Tetraploid yeast acquire a greater number of mutations and gain 

more diverse adaptive mutations than haploids and diploids, indicative of greater 

flexibility during adaptation. If these mutations are beneficial at lower ploidy states, then 

the long-term benefit of polyploidy will be preserved, even if polyploidy is transient 

during adaptation. Our study provides strong evidence for a beneficial role of ancient 

polyploidization events that occurred in the evolution of most species.  

To our knowledge, this is the first study to identify examples of mutations that are 

selectively beneficial in polyploid strains. Whole chromosome aneuploidy of 

chromosome XIII provided a tetraploid specific benefit in raffinose media. Additionally, 

an SNF3 mutation was more beneficial in a tetraploid background than haploid or 

diploid backgrounds. We are also the first study to suggest that a particular adaptive 

mutation, HXT6/7amp, may have a genome stabilizing effect in polyploid yeast. 

Despite it being a well-studied and characterized pathway, we also make 

significant discoveries relevant to glucose pathways in yeast. We found adaptive 

mutations in two genes, IPT1 and MOT3, with no known role in the canonical glucose 

sensing and signaling pathways. Strains harboring mutations in these genes exhibit 

impressive fitness gains in raffinose media (Figure 4-1). By studying these mutations 

further, we may discover more about the complex regulation of nutrient metabolism in 

yeast. We also discover novel dominant mutations in MTH1 and RGT1. These 

mutations can be used to better understand the precise function of these genes in 
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regulating glucose responsive gene expression. The glucose pathway in yeast shares 

many of the same factors as the glucose pathway in humans (Ozcan and Johnston 

1995), thus contributions to the field of regulating glucose uptake in yeast may lead to a 

better understanding of glucose sensing and transport in mammals.  

5.3 Future Directions 

5.3.1 Evolutionary studies 

There remains a wealth of information to be gleaned from our experimental 

evolution study. In my thesis I focus primarily on single clones isolated from each 

population at a single time-point, generation 250. However, frozen stocks of the 

evolution experiments were made every 3-4 days throughout the experiment. These 

stocks allow us to ask several questions pertaining to the process of adaptive evolution. 

In particular, I would like to sequence single evolving populations at many time points to 

look at the order in which adaptive mutations are gained, how quickly those mutations 

spread, and the identity of other mutations that exist transiently within the population.  

How does the starting ploidy influence these characteristics? We could ask if there were 

certain types of mutations (like copy number variation) occurring relatively earlier in 

evolution (Gresham et al. 2008). Are chromosomes gained or lost in pairs, as is 

suggested by our pairwise analysis (Figure 2-5)? We find a greater sampling of adaptive 

mutations in the tetraploid evolved clones, is this reflective of greater population 

diversity?  We can address this question by examining he diversity of whole populations 

(rather than the single isolated clone utilized here), especially the tetraploid populations.  

Additionally, we evolved a subset of tetraploid clones an additional 250 

generations (denoted as 4Ne500).  We have sequenced a subset of these strains, but 
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otherwise are only beginning to examine this population. What we know so far is that 

nearly all the 4Ne500 strains have diploidized, although there are a few exceptions, in 

which the 4Ne500 clones have remained 4N.  This result is consistent with other studies 

that indicate that polyploidy is a transient state (Gerstein et al. 2006; Voordeckers et al. 

2015). Studies have shown that early beneficial mutations have the greatest fitness 

effects and subsequent mutations continue to improve fitness, though to a lesser 

degree (Orr 2005). In the 4Ne500 clones we could ask what types of mutations are 

subsequently gained and what effect do these mutations have on overall fitness. We 

could also compare 4Ne500 clones to their generation 250 ancestors. For example, do 

the 4Ne500 clones exhibit greater trade-offs in other growth conditions than 4Ne250 

clones? Have they become more specialized to growth in raffinose or, as has been 

previously reported, do subsequent adaptive mutations improve growth independent of 

carbon source (Wenger et al. 2011)? Overall, there is much more that can be learned 

about the pathways of adaptation, their relative fitness, and their frequency by studying 

the strains we already have in the freezer. 

5.3.2 Characterization of novel mutations 

IPT1 and MOT3   The first step in further understanding the IPT1 and MOT3 

mutations is to confirm conclusively that these mutations are indeed causally 

responsible for the adaptive phenotype.  Hence the first step would be to create strains 

containing only these mutations and confirm that they indeed confer improved growth in 

raffinose relative to the ancestor.   Given that we observe multiple clones with these 

mutations, this is expected to be purely a confirmatory experiment. 
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Once confirmed, the next step to understanding the adaptive mechanisms of the 

IPT1 and MOT3 mutations is to test whether or not these strains adapted to growth in 

raffinose by importing more glucose into the cell (as seen in the other adaptive 

mutants). Thus, I would begin by measuring the concentration of glucose in the media 

over time (Roop et al. 2016). I would also measure the population density over time, as 

some mutations are thought to impact growth in lag-phase and stationary-phase, rather 

than improve the growth rate (Toussaint and Conconi 2006; New et al. 2014). A 

shortened lag-phase or a higher density stationary-phase may explain why studies of 

chemostatic growth have not recovered mutations in these genes, as growth in a 

chemostat maintains constant population size whereas in serial transfer experiments, 

cells undergo daily lag- and stationary-phase growth.   

We observe only modest expression changes in the glucose responsive gene 

panel strains with mutations in IPT1 and MOT3. Thus, these mutations may be working 

post translationally to alter protein concentrations or localization. To test this, I would 

examine the localization of transporters by fluorescent microscopy (since there is no 

evidence of increased signaling from the sensors). With this strategy, I believe we would 

begin to understand the role of IPT1 and MOT3 in adaptation to growth in raffinose.  

Dominant RGT1 and MTH1 mutations As with other mutations, the first step is 

to confirm that these dominant mutations are indeed causal for the adaptive mutation.  

To this end, I have made efforts to engineer strains that harbor only the MTH1-C321F or 

RGT1-S509stop mutation, free from other, presumably hitchhiker mutations observed in 

the generation 250 adaptive clones. These strains can be used to determine the fitness 
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effect of each dominant mutation in differing ploidy backgrounds, similar to the SNF3-

G439E mutation (Figure 4-4).  

Surprisingly, the genome wide binding profile of Rgt1p has never been 

measured. Experiments that look for changes in the Rgt1p binding profile under specific 

conditions, such as low- and high- glucose media and galactose media, would go a long 

way in elucidating the different functional roles of Rgt1p in different environments. My 

work indicates that the RGT1-S509Stop mutation is not a complete loss-of-function 

(Chapter 4.2.4); therefore, performing ChIP-seq or targeted ChIP-qPCR on this 

truncated form on Rgt1p may be one method to understand the molecular effects of the 

Rgt1p “inhibitor of repression” domain (Figure 4-8) (Polish et al. 2005).  To this end, I 

have ongoing efforts to see if the truncated form of Rgt1p is translated, thanks to 

antibodies to both the C-terminus and N-terminus of Rgt1p, kindly provided by Mark 

Johnston. I am further working to optimize these antibodies for use in ChIP-qPCR and 

ChIP-seq. 

Glucose independent expression in the RGT1-S509Stop mutant strain suggests 

that the mutation may only impact Rgt1p function at specific promoters, specifically 

HXT2 and HXT4 (Figure 4-10). I hypothesize that this may be the result of dissociation 

with a specific binding partner at those promoters. Therefore, another method to dissect 

the role of dominant mutations in MTH1 and RGT1 would be to look at their association 

with known regulators and binding partners such as Ssn6p/Tup1p and Std1p (Gancedo 

2008) or measure protein interactions en masse with mass spectrometry.  
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5.3.3 Tetraploidy induced environmental stress response 

The environmental stress response in yeast is characterized by rapid, but 

transient, transcriptional changes in a stereotypical set of genes after introduction of the 

stressor. The expression changes typically spike at 15 minutes after introduction of the 

stress and return to basal levels within an hour (Gasch and Werner-Washburne 2002). 

Yet, the tetraploid ancestor is exhibiting signs of ESR after 24 hours of growth in 

raffinose (Figure 3-2), albeit with considerable variability (Figure 3-3). To test the impact 

of ploidy on the ESR immediately upon transfer to raffinose media, an undergraduate in 

the lab, Hannah Chatwin, collected RNA at 15min, 30min, 1hr, 1.5hr, and 2hr after 

switching log-phase cells from rich media (YPD) to either rich media or raffinose media. 

She tested four known ESR genes and their non-ESR iso-enzymes, a representative 

plot is shown in Figure 5-2. Her results indicate that there is no noticeable difference in 

the initial environmental stress response in tetraploid yeast when grown in raffinose.  If 

this early result holds, it would suggest that cells of all ploidy levels respond similarly at 

the onset of stress. However, the effect of long-term stress (as indicated by the RNA-

seq and qRT-PCR) on mutability is relatively unknown. A great deal of additional work is 

necessary to fully understand the temporal dynamics of activation of ESR in the 

tetraploid ancestor in raffinose media.  
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Figure 5-2 Ploidy level does not impact the environmental stress response to 
growth in raffinose media The 1N (solid), 2N (dashed), and 4N (dotted) ancestral 
strains were grown to log-phase in YPD. At time zero, strains were switched to either 
YPD (red) or raffinose media (blue). Expression of the ESR gene PGM2 peaks at 
15minutes and returns to near baseline after 1 hour. Ploidy does not impact the initial 
ESR when strains are introduced to raffinose media. Expression of PGM2 was 
measured by qRT-PCR and normalized to ACT1 expression. All values are relative to 
the diploid ancestral strain at T0. n=1.  
 

5.3.4 Genome stabilization by HXT6/7amp 

I think one of the most interesting, and potentially most controversial discoveries 

that I made was the apparent genome stabilizing effect of HXT6/7amp. Strains that 

harbor HXT6/7amp gained significantly fewer mutations and remained largely tetraploid 

(Figure 4-11). I hypothesize that the stabilizing effect is related to a reduction in stress in 

the tetraploid lineages that gained amplifications of HXT6/7. It has been shown that 

polyploidy and aneuploidy can occur in response to stress (Storchova and Pellman 

2004). In fact, aneuploidy itself causes a general proteotoxic stress response 

(Oromendia et al. 2012).  Our whole genome expression data suggest that the tetraploid 



 114 

ancestor is more stressed in raffinose than the diploid ancestor (Figure 3-2), thus, it is 

not unreasonable that reducing stress could result in genome stabilization.   

To further understand the impact of HXT6/7amp on the environmental stress 

response, we compared the diploid evolved clones with mutations in SNF3 and 

HXT6/7amp (2Ne clones 232 and 233, respectively) to the diploid ancestor. Whole 

genome expression in the strain harboring HXT6/7amp was negatively enriched for ESR 

genes, suggesting it was indeed less stressed than the diploid ancestor (data not 

shown). In contrast, the strain with an SNF3 mutation showed no significant alteration in 

the stress response, relative to the diploid ancestor. While these data suggest that 

HXT6/7amp may reduce stress relative to SNF3, further studies are required to confirm 

these preliminary results. If HXT6/7amp does reduce stress, further studies are needed to 

understand how its amplification reduces cellular stress.  

While the evidence I present in chapter 4.2.5 is suggestive of a genome 

stabilizing effect of HXT6/7amp, direct measurements of HXT6/7amp on genome stability 

are required. One method is to repeat the evolution experiment with strains engineered 

to have either HXT6/7amp or another adaptive mutant, such as SNF3. Genome stability 

could be measured quickly by quantifying total DNA content over time, as previously 

described (Gerstein et al. 2006). If HXT6/7amp is genome stabilizing, I hypothesize that 

strains with HXT6/7amp will remain largely tetraploid while strains with other adaptive 

mutations would be expected to converge on diploidy.  
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6 THE IMPACT OF ANEUPLOIDY ON TRANSCRIPTIONAL REGULATORS 

6.1 Introduction 

In addition to my primary research project, I also sought to understand the impact 

of aneuploid on transcriptional regulators. Aneuploidy, when cells posses a karyotype 

that is not a multiple of the haploid complement, has a profound impact on cellular 

functions (Torres et al. 2008). In our experimental evolutions study of yeast strains, we 

observe that most tetraploid strains become aneuploid over the course of adaptation. In 

terms of human health, 10-50% of human embryos are aneuploidy (Nagaoka et al. 

2012), it is a common cause of human miscarriage and malformations (Fitzpatrick 

2005), the leading cause of intellectual disability (Oromendia and Amon 2014), is linked 

to premature aging (Wijshake et al. 2012), and is associated with many cancers 

(Weaver and Cleveland 2006; Nagaoka et al. 2012; Chen et al. 2015). Transcriptional 

regulation is governed by the interaction of a large set of DNA-binding proteins including 

transcription factors, nucleosomes, histone modifying enzymes, and basal 

transcriptional machinery. The binding specificity of many of these proteins comes from 

both their specific sequence affinity and cellular abundance.  Furthermore, their effect 

on target gene expression is influenced by interactions with other DNA-binding proteins, 

an effect often referred to as combinatorial control. An interesting, non-obvious, and yet 

critically important characteristic of the regulatory network is that small changes at key 

points within the network can result in dramatic changes in the resultant expression 

profile. It stands to reason that changes in DNA copy number due to aneuploidy has 

major effects on the gene regulatory network through DNA binding proteins. 

Down syndrome (T21) is a common human autosomal aneuploidy caused by an 
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extra copy of chromosome 21 (HSA21). Individuals with T21 exhibit heart defects (Li et 

al. 2012), cognitive and developmental deficits (Lott and Dierssen 2010; Dierssen 

2012), and an increased risk of Alzheimer’s disease, childhood leukemia, and other 

autoimmune diseases (Yoshida et al. 2013; Hartley et al. 2015; Colvin and Yeager 

2017). However, the spectrum and severity of phenotypes varies greatly between 

individuals (Potter 2016). Ultimately, by understanding the molecular basis of Down 

syndrome, particularly on transcription, we gain key insights into all aneuploidy-

associated aspects of biology. 

Most studies suggest that the Down syndrome phenotypes are caused by a gene 

dosage imbalance for genes encoded on HSA21, including transcription factors (TFs) 

and constituents of protein complexes (Gardiner 2006; Megarbane et al. 2009). It has 

been shown that an increase in chromosome copy number results in a concomitant 

increase in RNA and protein levels, known as the primary dosage response (Figure 

6-1)(Torres et al. 2010; Tang and Amon 2013). However, there are several genes 

located off HSA21 that also exhibit alterations in expression (Fitzpatrick 2005; Costa et 

al. 2011; Vilardell et al. 2011; Sheltzer et al. 2012). These alterations off of HSA21 may 

be the results of trans-acting genes dosages effects (Fitzpatrick 2005; Antonarakis 

2016). For example, transcription factors encoded on HSA21 may alter the expression 

of genes on other chromosomes.  
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Figure 6-1 Aneuploidy increases DNA, RNA, and protein levels on altered 
chromosome. In yeast disomes, RNA and protein levels increase with the increased 
DNA copy number of aneuploid chromosomes. Figure is used with permission from 
(Tang and Amon 2013).  
 

 
Indeed, a meta-analysis of multiple expression studies indicate genes involved in 

transcriptional regulation, such as transcription factors, are enriched in the dysregulated 

genes in Down syndrome (Vilardell et al. 2011). Additionally, HSA21 itself contains 

several TFs that are altered in expression in individuals with Down syndrome (Prandini 

et al. 2007). Studies have shown that overexpression of the HSA21 TFs Oligo2 and 

Ets2 in mouse cells disrupt neurogenesis and cause neuronal apoptosis similar to that 

in Down syndrome brains (Wolvetang et al. 2003; Liu et al. 2015). While these studies 

suggest these phenotypes are a result of downstream gene misregulation, they do not 

directly assess the mechanism of the dysregulation. To understand the molecular 
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mechanism underlying in impact of trisomy 21 on the transcriptional regulatory network 

it is necessary to directly profile DNA-binding proteins genome wide in both Down 

syndrome and euploid cells.  

My long-term goal of this project is to understanding the impact of aneuploidy, 

specifically trisomy 21, on DNA-binding proteins. I hypothesize that changes in the 

DNA/transcription factor stoichiometry due to trisomy 21 results in aberrant transcription 

factor binding (Figure 6-2). In particular, I hypothesize that transcription factors encoded 

on HSA21 with increased expression will have an altered genome-wide binding profile: 

they may exhibit an increased binding frequency at known binding locations and/or bind 

lesser affinity binding sites. For these studies I am utilizing lymphoblastoid cell lines 

(LCLs) derived from a family of individuals: a mother, father, child with Down syndrome, 

and an unaffected brother (Figure 6-3). The brother is of a similar age as the child with 

Down syndrome and serves as an age and sex matched control. By performing these 

studies in the family, we can also see the impact of inheritance and individual variation 

on TF binding. In this chapter, I discuss preliminary experiments to determine the 

impact of T21 on the genome-wide binding profiles of TFs encoded on HSA21. 



 119 

 

Figure 6-2 Graphical hypothesis of the impact of transcription factor copy number 
on genome-wide binding profile. A) Example of transcription factor binding in euploid 
cells. The TF (green) typically binds to the promoter of the red gene and modulates 
transcription. B) Example of altered transcription factor binding in cells with increased 
TF copy number. Increased copy number of the TF (green) results in increased TF 
protein production. This may lead to increased frequency of binding at the red gene, or 
off target binding at other sites, such as the blue gene.  

 
 

Figure 6-3 Pedigree for the lymphoblastoid cell lines used in this study. The cells 
used in this study were derived from a family with a mother (red), father (purple), a child 
with Down syndrome (blue), and unaffected brother (green). These colors are used in 
subsequent figures to denote the different individuals in the family.  
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6.2 Results and Discussion 

6.2.1 Expression of TFs encoded on HSA21 are increased in T21 

There are several transcription factors encoded on HSA21, however not all of 

them are expressed in each cell type. To determine which HSA21 TFs are expressed in 

LCLs, I examined RNA sequencing performed by Dr. Mary Allen in the familial derived 

LCLs. I found that only a handful of HSA21 transcription factors were expressed in 

LCLs: GABPA, BACH1, RUNX1, and ETS2 (data not shown). I next asked if these TFs 

were upregulated, relative to euploid controls, in the cells derived from the individual 

with T21. I measured the expression of GABPA, BACH1, ETS2, and RUNX1 in each 

individual in the familial derived LCLs with RT-qPCR. Gene expression is internally 

normalized to RPL13 (Figure 6-4). The cells derived from the individual with T21 up-

regulate the HSA21 encoded TFs ~1.5 fold compared to the cells derived from euploid 

individuals. These results are consistent with expression levels measured in LCLs and 

fibroblasts isolated from a larger cohort of T21 and euploid individuals (Prandini et al. 

2007). Although, there is some variability in the expression levels of the TFs between 

the individuals measured, these results indicate that increased chromosome copy 

number due to T21 increases the expression of genes, particularly TFs, encoded on 

HSA21.  

Importantly, each of these TFs have a known role in the T21 phenotype, 

suggesting that overexpression of these TFs due to an additionally copy of HSA21 may 

have functional consequences. BACH1 is involved in oxidative stress, cell cycle control, 

and neurodegeneration and is overexpressed in the brains of DS and Alzheimer’s 

patients (Shim KS, Ferrando-Miguel R 2003; Warnatz et al. 2011). GABPA has been 
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shown to regulate mitochondrial function and play a role in the Down syndrome 

phenotype (Rosmarin 2004; Gardiner 2006). Lastly, RUNX1, which regulates 

hematopoiesis and ETS2 have been implicated in leukemia in T21 (Sementchenko and 

Watson 2000; Fonatsch 2010; Nižetić and Groet 2012).  

 

 

 

Figure 6-4 Expression of HSA21 encoded transcription factors in familial derived 
lymphoblastoid cell lines. Relative normalized expression for HSA21 encoded TFs in 
cells derived from an individual with T21 (blue), his mother (red), his father (purple) and 
an unaffected brother (green). Expression of the indicated TF (x-axis) was measured by 
RT-qPCR and internally normalized to RPL13 expression and relative to expression in 
the father (purple). Error bars represent the standard error of the mean for 2 biological 
replicates.  
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6.2.2 Lack of alterations to GABPA binding profile in T21 

I hypothesized that increased TF dosage due to T21 would result in alterations to 

the genome-wide transcription factor binding profile of TFs encoded on HSA21. To test 

this hypothesis, I profiled GABPA binding in the familial derived LCLs. I selected 

GABPA for further analysis because the euploid cell lines expressed GABPA is similar 

levels and the T21 cell line overexpressed GABPA at 1.5 fold. Additionally, GABPA has 

been profiled in the ENCODE project in several cell types, included lymphoblastoid 

cells, thus there exists a well-characterized GABPA antibody available for chromatin 

immunoprecipitation (ChIP) (The ENCODE Project Consortium 2011). I performed 

ChIP-seq to determine the genome-wide binding profile for GABPA with mouse IgG as 

a control following ENCODE standards (Landt et al. 2012). Each library had between 16 

to 24 million uniquely mapped reads (Table 6-3) and peak-calling analysis found 

between 1000 and 2100 peaks per cell line for a merged total of 2183 GABPA peaks 

(Table 6-1). I also confirmed that the cell line derived from the individual with T21 had 

an extra copy of HSA21 (Figure 6-5).  

 

Cell line Peaks Unique Peaks 
T21 1424 43 
2N Brother 1041 7 
2N Mom 1259 19 
2N Dad 2107 609 
Merged Total 2183 
Table 6-1 Summary of GABPA Peak Calling 
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Figure 6-5 Chromosome copy number in ChIP-seq data Average number of 
sequencing reads per chromosome in the child with T21 (blue), 2N brother (green), 2N 
mother (red) and 2N father (purple). Chromosome copy number was determined from 
mouse IgG ChIP sequencing libraries normalized to coverage in the 2N brother (green).  

 
Figure 6-6 GABPA unique peaks in familial derived LCLs. A) Venn diagram 
comparing the shared and unique peaks in the familial derived LCLs. There are a 
greater number of shared and unique peaks called in the cells derived from the 2N Dad. 
Venn diagram created with Venny (Oliveros 2015). B) IGV snapshot of a peak region 
that was called unique in the 2N Dad cell line.   
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Using the ChIP-seq peak calls, I asked if GABPA was bound at different 

locations in each individual. In my initial analysis I asked which peaks overlapped 

between cell lines (e.g. “shared”) and which peaks were unique to each cell line (Figure 

6-6A). Overall, the GABPA libraries prepared from the cells derived from the euploid 

father had a greater number of peaks. Unfortunately, in many cases when the peak- 

calling algorithm called peaks in only a single cell line, there appears to be coverage 

suggestive of lower level undetected peaks in the other lines as well (Figure 6-6B). To 

account for this issue and determine the unique peaks for each individual I instead 

merged all peaks identified in the ChIP-seq analysis (any individual) and then 

determined which of these peaks were present in each cell line above background 

(Figure 6-7). Background was determined to be one standard deviation above the 

median normalized coverage over the merged peak regions (FPKM) in the mouse IgG 

libraries (described in section 6.3.5). Overall, there were very few individual GABPA 

peaks identified between the familial derived LCLs, suggesting that increased gene 

dosage of GABPA does not increase GABPA binding sites genome-wide.  

I next asked if there was increased occupancy of GABPA due to increased 

GABPA gene dosage in the individual with T21. To determine differential occupancy, I 

counted the number of reads over all GABPA binding sites identified in the ChIP-seq 

(any individual) and performed differential expression analysis using DESeq between 

pairs of individuals (Figure 6-8). There are at most 4 GABPA binding sites that exhibit 

differential occupancy between the individual with T21 and any other members of his 

family, indicating that ChIP occupancy is not dramatically altered for GABPA as a result 

of increased gene dosage due to T21.  
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Figure 6-7 GABPA peaks in each individual with coverage above background. 
Venn diagram comparing the shared and unique peaks with coverage above 
background in the familial derived LCLs. The majority of peaks are present in each all 
cell lines. Venn diagram created with Venny (Oliveros 2015). 
 

 

Figure 6-8 Differential GABPA peak occupancy. MA plot depicting the differential 
occupancy of GABPA peaks between cells derived from the individual with T21 and his 
euploid brother. Each dot is a single peak, the X-axis is average peak occupancy and 
the Y-axis is the log2 transformed differential occupancy between cells derived from the 
individual with T21 and his euploid brother. Red dots are significantly differential 
occupied sites.  
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 Overall, there was little to no alterations to the genome-wide binding profile of 

GABPA in the individual with T21, despite the increased gene dosage identified by RT-

qPCR (Figure 6-4). This may be due to several factors. First, these results are 

preliminary and only performed in a single biological replicate for each cell line, more 

replicates are required to draw significant conclusions. Additionally, while GABPA is 

over-expressed in the T21 cells on the RNA-level, protein levels of GABPA may be 

tightly regulated and thus dosage compensated. A preliminary analysis of GABPA 

protein levels in the LCLs derived from the individual with T21 and his brother do not 

show an increase in GABPA protein (Figure 6-9). Alternatively, ChIP-seq analysis may 

not be sensitive enough to detect small changes in GABPA binding in a population of 

cells. In particular, it is very difficult to normalized ChIP-seq data between samples.  

Even in well-controlled ChIP-seq experiments, variability in crosslinking efficiency, 

shearing, and antibody pull-down are expected.  One method to improve normalization 

is to use spike-in controls, i.e. to add an equal number of cells from a different species 

into each sample before crosslinking and normalize the ChIP-seq libraries to the 

number of reads that map to the exogenous genome (Bonhoure et al. 2014; Orlando et 

al. 2014). However, this method requires an antibody that reacts to both human and 

exogenous cells. Ultimately, better normalization and an increased number of replicates 

are necessary to accurately measure small alterations to the genome-wide binding 

profiles of transcriptional regulators.  
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Figure 6-9 GABPA protein expression is not altered in T21 cells. Western blot for 
GABPA in T21 cells and euploid cells with GAPDH as a loading control.  

6.2.3 Alterations in H3K4me3 binding are due to individual variation 

We cannot know a priori which transcription factors would have a dosage 

sensitive response on genome-wide binding a gene regulation; therefore, I also 

examined general promoter usage between familial derived LCLs. To do this I 

performed ChIP-seq for H3K4me3, an epigenetic marker of promoters (Kouzarides 

2007). There are an average of 25,000 peaks called in each individual (Table 6-2). I 

further compared the location of the H3K4me3 histone marks between the individual 

LCLs (Figure 6-10). The majority of H3K4me3 sites are shared between cells derived 

from all 4 individuals. Additionally, I also see evidence of sites that show a pattern of 

inheritance and sites that are unique to each individual (Figure 6-11). There are similar 

numbers of unique H3K4me3 sites in all members of the family, with the exception of 

the cells derived from the euploid father, which have 10x as many unique sites. This 

may be due to differences in crosslinking or sheering in this sample. Together these 

data, with the GABPA ChIP-seq data, suggest that ChIP-seq may not be quantitative 

enough to see variations in the genome-wide binding profiles of transcriptional 

regulators in cases of relatively small dosage shift (as would be expected in Down 

syndrome).   
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Cell line Peaks 
T21 25042 
2N Brother 24366 
2N Mom 22100 
2N Dad 26608 
Total 31176 

Table 6-2 H3K4me3 peak calling summary. 

 

 
Figure 6-10 The majority of H3K4me3 peaks are shared between individuals. Venn 
diagram comparing the location of peaks identified in the familial derived lymphoblastoid 
cell lines. Venn diagram created with Venny (Oliveros 2015).  
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Figure 6-11 Differing patterns of H3K4me3 in the familial derived LCLs. IGV 
snapshot of H3K4me3 ChIP-seq data for the cells derived from T21 (blue), 2N brother 
(green), 2N mom (red), and 2N dad (purple) compared to rabbit IgG (grey). Examples of 
H3K4me3 patterns for shared (orange), unique (cyan), or inherited (light purple) peaks 
are indicated.  

6.2.4 Transcription of binding sites for TFs encoded on HSA21 are increased in 
T21 

Due to the limitations in ChIP-seq, I took a second approach to assess the 

impact of increased gene dosage from T21 on the function of transcription factors 

encoded on HSA21. Several studies have shown that enhancer region of the DNA are 

transcribed, producing eRNAs. Additionally, Dr. Mary Allen and Dr. Joey Azofeifa have 

recently shown that transcription over TF binding sites is indicative of increased TF 

activity (Allen et al. 2014). Using nascent transcription data (performed by Dr. Mary 

Allen) and publically available ChIP-seq data for BACH1, GABPA, RUNX1, and ETS2, I 

measured changes in transcription over known TF binding sites in the familial derived 
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LCLs. My hypothesis is that the cells derived from the individual with T21 will exhibit 

increased transcription over TF binding sites.  

To test this hypothesis, I performed differential transcription analysis on GRO-

seq read counts over known GABPA binding sites. I used GRO-seq data performed and 

analyzed by Dr. Mary Allen in the identical familial derived LCLs grown under the same 

conditions, at the same time, as the cells used in the previously described experiments. 

For this study, I chose to use publically available GABPA binding data, rather than my 

own data, because the public data was performed in at least two biological replicates 

and fully conforms to ENCODE standards (Landt et al. 2012). High confidence GABPA 

binding sites for GM12878, an immortalized lymphoblastoid cell line, were obtained from 

ENCODE (GEO:GSE96120) (Dunham et al. 2012). I counted the number of GRO-seq 

reads (or eRNAs) over each GABPA binding site normalized for the size of the binding 

site and total reads mapped (for complete details see 6.3.7). I calculated the log2 

transformed eRNA expression between the T21 and 2N brother.  As a control, I also 

compared eRNA expression between two euploid cell lines, the 2N father and the 2N 

brother. I compared the distribution of differential eRNA expression between the T21 

and 2N cells to the distribution between euploid cells and found that the distribution of 

log2 transformed GABPA eRNA expression between the T21 cells and euploid cells is 

significantly increased compared the euploid cells (p=2.2x10-16, paired student t-test). 

This data supports the hypothesis that the dosage imbalance from T21 causes 

increased GABPA activity in cells derived from an individual with Down syndrome.  
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Figure 6-12 Increased GABPA eRNA expression in T21. A) Histogram of the log2 
transformed differential eRNA expression over GABPA binding sites between T21 cells 
and euploid cells (blue) or euploid cells (red). B) Boxplot of log2 transformed differential 
eRNA expression over GABPA binding sites between T21 cells and euploid cells (blue) 
or euploid cells (red). Transcription over GABPA binding sites is significantly increased 
in T21 cells compared to euploid (p=2.2x10-16) 

 
To see if the increased TF activity was true of other TFs encoded on HSA21, I 

extended the eRNA expression analysis to BACH1, RUNX1, and ETS2. Each of these 

TFs are transcribed in LCLs and exhibit a dosage response to T21 (Figure 6-4). 

Unfortunately, ENCODE binding data is not available for these cells in GM12878 cells 

(LCLs). Instead I used ChIP-seq for BACH1 (GEO:GSM935576), RUNX1 

(GEO:GSE91747), and ETS2 (ENCSR596IKD) that was performed in K562 cells, a cell 

line derived from a patient with chronic myelogenous leukemia (Koeffler and Golde 

1980; Dunham et al. 2012). For each TF tested, I saw an increase in the transcription 

over the TF binding sites in each sample (Figure 6-13). Although, the eRNA expression 

is not statistically increased in T21 cells for BACH1, RUNX1, and ETS2, the trend 
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suggests increased TF activity for HSA21 encoded TFs in T21. The lack of significance 

in these TFs may be due to using ChIP-seq data from a different cell type than the 

GRO-seq. While the differential eRNA expression suggests increased TF activity in 

HSA21 encode TFs, further studies are required to more precisely measure TF activity 

in T21 and euploid cells.  

 

 

Figure 6-13 Increased HSA21 encoded TF eRNA expression T21 cells. Histogram of 
the log2 transformed differential eRNA expression over A) BACH1, B) RUNX1, and C) 
ETS2 binding sites between T21 cells and euploid cells (blue) or euploid cells (red). 
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6.3 Methods 

6.3.1 Cell growth 

Cells were grown according to the encode standards for GM12878, a 

lymphoblastoid cell line. Cells were grown in T25 tissue coulter flasks with 20mL of 

media (RPMI 1640 + 2mM L- glutamine + 15% FBS + pen/step) in the upright position 

at 37°C with 5% CO2. Cells were passaged ~2-3 days and grown between 0.2 and 1.0 

Million cells/mL.  

6.3.2 qRT-PCR 

Cells were grown to 1.0M cell/ml, washed, and frozen at -80°C. Cell pellets were 

thawed at RT in TRI reagent (Sigma T9424) and RNA isolated according to 

manufacture’s instructions. 2ug of RNA was reverse transcribed using Multiscribe 

reverse transcriptase (Thermo Fisher #4311235) with random hexamers accordning to 

manufactures instructions. cDNA was diluted to 1:100 and quantified using targeted 

qPCR primers (Table 14-6) and SYBR select (Life Technologies #4472908) on the 

Biorad CFX qPCR system. A standard curve was used to determine linear range and 

efficiency of the primers. Gene expression was internally normalized to RBP13 

expression and error propagated for replicates. I tested several genes for internal 

normalization since we worried that T21 may alter the expression of normalization 

genes. I got the most reproducibility from RPL13 and 18s, and poor reproducibility from 

ACTBL2 and GAPDH (data not shown). I chose RPL13 for internal normalization 

because, unlike 18s, I did not need to de a separate dilution. Primers were designed to 

span exon-exon junctions to specifically measure mature RNA.  
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6.3.3 Chromatin Immunoprecipitation (ChIP) library preparation 

Chromatin isolation ChIP-seq libraries were prepared using the ENCODE 

protocol for GM12878 cells from the Myers lab (V011014). Briefly, cells were cross-

linked in a final concentration of 1% formaldehyde for 10 minutes at room temperature. 

To stop the crosslinking reaction, glycine was added to a final concentration of 0.125M. 

Cells were transferred to 50mL conicals and pelleted for 5min at 5,000xg at 4°C, 

washed with ice cold 1X PBS and snap frozen in liquid nitrogen in aliquots of 2x107 cells 

(~1 flask of cells per aliquot). Cells pellets were thawed in 1mL Farnham lysis buffer (5 

mM PIPES pH 8.0 / 85 mM KCl / 0.5% NP-40 + Protease inhibitor).  Cells were broken 

open by passage through a 20G needle 20x. Nuclei were collected for 5 min at 2,000xg 

at 4°C and resuspended in 300uL RIPA (1X PBS / 1% NP-40 / 0.5% sodium 

deoxycholate / 0.1% SDS + Protease inhibitor). Chromatin was sheered to a median 

size 300bp in a Diagenode Bioruptor for 3x 10-minute cycles of 30sec ON and 30sec 

OFF. After each cycle the water was brought back to ice cold by adding ice to the water 

bath. The amount of sheering necessary should be optimized for each experiment. 

Chromatin was collected at 14,000 rpm for 15min.  

Immunoprecipitation 200ul of magnetic beads (Dynabeads Protein G, 

Invitrogen 10003D), was washed 2x in 1mL PBS/BSA (1XPBS / 5 mg/ml BSA) and 

resuspended in 200ul PBS/BSA + 5ul primary antibody. Antibody was coupled to the 

bead on a rotator for 2hr at 4°C. Antibody coupled beads were washed 3X in PBS/BSA 

and resuspended in 100ul PBS/BSA. Antibody coupled beads were added to 300ul 

sheered chromatin and incubated in a rotator overnight at 4°C. Beads were washed 5x 

with LiCl Wash Buffer (100 mM Tris pH 7.5 / 500 mM LiCl / 1% NP-40 / 1% sodium 
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deoxycholate) for 3 minutes each followed by 1X wash with TE Buffer (10 mM Tris-HCl 

pH 7.5 / 0.1 mM Na2EDTA). Beads were resuspended in 100ul IP Elution buffer (1% 

SDS / 0.1 M NaHCO3) and chromatin eluted at 65°C for 1 hour.  Beads were collected 

at 14,000rpm at RT for 3min and supernatant transferred to a new tube. Crosslinks 

were reversed overnight at 65°C. Chromatin was isolated using the QIAquick PCR 

Purification Kit and eluted in two aliquots of 30ul EB buffer warmed to 55°C. DNA was 

measured with a Qubit. 

Library prep ChIP-seq libraries were prepared from 10ng ChIP’d DNA as input 

using the NEBNext DNA library prep kit (E6040) following manufacture’s instructions.  

Libraries were multiplexed and sequenced on an Illumina HiSeq 2000 on a 1x50 flow-

cell.     

6.3.4 ChIP sequencing analysis 

Read Mapping ChIP-seq reads were mapped to the hg19 genome. The reads 

were mapped using the Bowtie2 v2.0.2 (Langmead and Salzberg 2012)  local alignment 

strategy, allowing for multiple mapping, and setting with default options. The mapped 

reads then underwent file format conversion into the binary format for downstream 

analysis using Samtools view, sort, and index v0.1.18 (Li et al. 2009). Post-alignment to 

the genome, duplicate pairs resulting from PCR over-amplification was removed using 

Samtools rmdup. Read mapping is summarized in Table 6-3.  
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  Antibody	
   	
  Cell	
  Line	
   Reads	
   Unique	
  Mapped	
  

GABPA	
  

Ethan	
  (T21)	
   2.48E+07	
   2.14E+07	
   87.28%	
  
Eric	
  (2N	
  
Brother)	
   2.79E+07	
   2.46E+07	
   89.83%	
  

Elizabeth	
  
(2N	
  Mom)	
   2.45E+07	
   2.12E+07	
   87.99%	
  

Eli	
  (2N	
  Dad)	
   2.38E+07	
   1.92E+07	
   82.09%	
  

Mus	
  IgG	
  

Ethan	
  (T21)	
   2.18E+07	
   1.86E+07	
   86.20%	
  
Eric	
  (2N	
  
Brother)	
   2.42E+07	
   2.12E+07	
   88.72%	
  

Elizabeth	
  
(2N	
  Mom)	
   2.58E+07	
   2.17E+07	
   85.34%	
  

Eli	
  (2N	
  Dad)	
   1.98E+07	
   1.65E+07	
   84.51%	
  

H3K4me3	
  

Ethan	
  (T21)	
   2.35E+07	
   2.00E+07	
   87.52%	
  
Eric	
  (2N	
  
Brother)	
   1.88E+07	
   1.64E+07	
   89.43%	
  

Elizabeth	
  
(2N	
  Mom)	
   2.16E+07	
   1.88E+07	
   89.20%	
  

Eli	
  (2N	
  Dad)	
   2.17E+07	
   1.84E+07	
   87.23%	
  

Rab	
  IgG	
  

Ethan	
  (T21)	
   2.24E+07	
   1.81E+07	
   82.23%	
  
Eric	
  (2N	
  
Brother)	
   2.05E+07	
   1.78E+07	
   88.81%	
  

Elizabeth	
  
(2N	
  Mom)	
   1.78E+07	
   1.39E+07	
   80.25%	
  

Eli	
  (2N	
  Dad)	
   2.32E+07	
   2.00E+07	
   88.48%	
  
Table 6-3 ChIP sequencing summary 

Peak Calling Peak calling was performed using MACs v2.0.9 (Zhang et al. 2008) 

with the following settings: -t <ChIP reads> -c <IgG reads> -f BAM –g hs –q 0.01 –n 

<out folder>.  After peak-calling the H3K4me3 files, the H3K4me3 peaks within 1kb 

were merged to a single peak using bedtools intersectBed v 2.16.2 (Quinlan and Hall 

2010).   
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6.3.5 Minimum peak coverage analysis 

ChIP peaks from each cell line was merged into a single peak file which 

contained a single entry for each peak found in all samples using bedtools mergeBed v 

2.16.2 (Quinlan and Hall 2010).   The number of reads over each peak was counted 

using bedtoold coverageBed v2.16.2 with default settings. Additionally, the number of 

reads in the control data (IgG) was also counted for each peak. Fragments mapped per 

kilobase per millions reads mapped (FPKM) was calculated using a custom script. The 

median FPKM was determined for each dataset using a custom python script and an 

FPKM of 2.23 was determined to be the threshold for peaks above background.  

6.3.6 Differential ChIP occupancy analysis 

The number of reads over ChIP region was determined as described in 6.3.5. 

Differential occupancy analysis was performed using DESeq v1.10.1 (Anders and 

Huber 2010). Since there were no biological replicates, the “blind” method was used to 

estimate dispersions. Differential occupancy was determined for all evolved clones 

against the diploid ancestral strain. Genes were considered differentially expressed 

between two strains if their adjusted p-value was less than 0.05. 

6.3.7 eRNA expression counts 

High quality ChIP-seq peak files were obtained from the ENCODE consortium for 

GABPA, BACH1, RUNX1, and ETS2 (Dunham et al. 2012).  The number of GRO-seq 

reads (sequencing and analysis performed by Dr. Mary Allen) over each TF peak was 

counted using bedtools coverageBed v2.16.2 with default settings. The normalized read 

count of FPKM was calculated for each peak using a custom python script, summarized 

in Figure 6-14.  
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Figure 6-14 Diagram for calculating transcription over a ChIP-seq binding site 
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6.4 Conclusions 

I hypothesized than an increase in TF dosage due to an additional copy of 

chromosome 21 would alter the genome-wide binding profile of TFs encoded on 

HSA21. I initially tested this hypothesis using ChIP-sequencing for GABPA, a TF 

encoded on HSA21 and H3K4me3, a mark for active promoters. The ChIP-sequencing 

data did not show significant alterations in the location or occupancy in the binding 

profiles of the transcriptional regulators. The binding profiles were most heavily 

influenced by the variation between samples rather than the biological differences within 

the samples. Our data suggests that ChIP-seq lacks sufficient resolution, particularly 

when comparing between separate samples, to measure small alterations in the binding 

profiles of proteins.  

Alternatively, I measured transcription factor activity in the familial derived LCLs 

through differential expression of eRNA, or enhancer RNAs, over known TF binding 

sites. Our lab has shown that eRNA expression is a better measure of TF activity than 

TF binding (unpublished). Overall, I saw an increase in transcription over TF binding 

sites for TFs encoded on HSA21 in the cells isolated from the individual with T21 

compared to euploid cells. However, the increase in transcription was not significant in 

for all TFs analyzed, suggesting that increased DNA dosage may not have an effect on 

the activity of all TFs encoded on HSA21. Additionally, lack of significant differences 

may be an artifact of using ChIP-seq data from a different cell line than the 

transcriptional data. In the future, these experiments would be improved by an 

increased number of replicates (only a single replicate of GRO-seq was analyzed) and 

matched GRO-seq and ChIP-seq data from the same cell lines. Tfit, a ChIP-free method 
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for determining eRNAs using GRO-seq data (by Dr. Joey Azofeifa), can also be applied 

to the these studies to determine differential eRNA expression (including novel sites of 

eRNA expression). This work is currently ongoing by Dr. Mary Allen.  

While the differential eRNA expression results are promising, more careful 

experiments are needed to fully understand the effect of TF dosage on its genome-wide 

function. For example, one of my major concerns is that all TFs tested show in increase 

in eRNAs over TF binding sites. At least 3 replicates with synthetic RNA spike-ins 

should be used to normalize the data before major conclusions can be drawn from the 

eRNA differential expression data. In particular, I am concerned that fragmentation 

differences between libraries could affect the number of eRNA (particularly short RNAs) 

sequenced. In future experiments, I would like to measure differential expression for 

TFs encoded on non-HSA21 chromosomes as a control.  

Another difficulty in these experiments was comparing alterations between cells 

derived from different individuals rather than isogenic cell lines. Differential ChIP or 

expression analyses are usually performed in the same cell line before and after 

treatment. Ideally these studies would be performed in cell lines that are isogenic except 

for HSA21. While human cells lines do exist for T21 and an isogenic euploid, we have 

not been able to get access to these lines in our lab (Letourneau et al. 2014). Instead, 

mouse cells, such as embryonic fibroblasts, could be used in lieu of human cell lines. I 

believe that using a mouse model offers significant advantages to human cell line 

studies: isolated mouse cells are primary cells, not immortalized, and there are multiple 

aneuploid models in which to study gene dosage effects of TF activity.  
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8 ADDITIONAL METHODS 

8.1 Haploid, diploid, and tetraploid ancestral strain construction 

All S. cerevisiae strains used in this study were isogenic to PY3295 (BY4741, 

S288c MATa his3Δ leu2Δ met15Δ ura3Δ) and are listed in (Selmecki et al. 2015). The 

strategy used to generate the isogenic ploidy series is illustrated in Figure 8-1 and 

genotypes of key intermediates are indicated. The CFP and YFP ancestors were 

derived from the haploid strain PY5997 (matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, 

trp1::NatR). Isogenic strains with either the CFP or YFP cassettes at the TRP1 locus 

(chromosome IV) were generated (PY5998 and PY5999) as follows: the pGAL1–CFP–

tADH–SpHIS5 or pGAL1–YFP–tADH–SpHIS5 cassette was PCR amplified from 

plasmid pB2694 (CFP) or pB2697 (YFP), respectively, with primers delTRPGFP5’ (5’-

TATTGAGCACGTGAGTATACGTGATTAAG CACACAAAGGCAGCTTGGAGTGCAGG 

TCGACGGATCCCCGGG-3’) and delTRPGFP3’ (‘9- GAACGTGCACTGAGTAGTATG 

TTGCAGTCTTTTGGAAATACGAGTCGAATTCGAGCTCGTTTAAAC-3’) and 

transformed into PY5997 at the TRP1 locus. The haploid ancestor strains expressing 

CFP (PY5998) or YFP (PY5999) were confirmed by PCR and fluorescence microscopy. 

The haploid ancestors were modified to become mating competent by transformation 

with plasmids PB2647 (LEU2-STE4) and PB2649 (URA3-STE4-MATa). Diploid zygotes 

were selected on -Ura -Leu plates, and then colony purified on YPD plates to allow 

plasmid loss. Diploid chromosome content was confirmed by flow cytometry and aCGH, 

and strains PY6006, PY6008, PY6014, and PY6022 were selected. The diploid 

ancestors were made mating competent by transformation with plasmids PB2647 and 

PB2649. Tetraploid zygotes were pulled onto YPD plates using a micromanipulator, and 
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after 2 days growth at 30 uC the ploidy of each zygote was determined by flow 

cytometry and aCGH. 

 
Figure 8-1 Schematic representation of the construction of isogenic haploid, 
diploid, and tetraploid strains used in this study. Relevant strain numbers are 
indicated for the CFP- and YFP-containing ancestors.  

Extended Data Figure 1 | Schematic representation of the construction of isogenic haploid, diploid, and tetraploid strains used in this study. Relevant strain
numbers are indicated for the CFP- and YFP-containing ancestors.
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8.2 Plasmid Construction 

To construct plasmids for the inducible expression of either CFP or YFP, the 

galactose-inducible GAL1 promoter was sub-cloned into the YFP plasmid PB1500 and 

the CFP plasmid PB2452. These plasmids were derived from the green fluorescent 

protein (GFP) tagging plasmid generated in (Longtine et al. 1998). Both plasmids 

contained the ADH gene terminator (tADH) after the YFP or CFP gene and the 

sequence of the SpHIS5 gene of Schizosaccharomyes pombe as a selectable marker. 

Plasmids PB1500 and PB2452 were digested with BamHI and PacI to introduce the 

pGAL promoter, 461 base pairs (bp) upstream of the start codon of GAL1 (Mumberg et 

al. 1995), which was amplified using the primers pGAL1 BamHI 5’ (5’-

ACGGATCCCCGGGTTGAAGTACGGATTAGAAGCCGCCGAG-3’) and pGAL1 PacI 3’ 

(5’-CGTTAATTAATATAGTTTTTTCTCCTTGACGTTAAAG-3’). Site-directed 

mutagenesis (Quick Change Mutagenesis Kit, Stratagene) was used to introduce an 

ATG translation start codon to the YFP and CFP genes (using the GAPATGpFA6 

primer, 5’-CAA 

TCAATCAATCAATCATCACATAAATTAATTAAATGAGTAAAGGAGAAG 

AACTTTTCACTGGAGTTGTC-3’). The resulting plasmids PB2694 and PB2697 

contained the cassette pGAL1–CFP–tADH–SpHIS5 and pGAL1–YFP–tADH– SpHIS5, 

respectively.  

PB2314 was used to delete the MAT locus as previously described (Storchová et 

al. 2006). PB1308 was used to perform a URA3 to TRP1 marker swap, as previously 

described (Cross 1997). PB1640 (hphMX4, (Goldstein and McCusker 1999)) was used 

for PCR-mediated deletion of STE4. PB2647 (STE4– LEU2) was used to restore mating 
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competency and was constructed by amplifying the STE4 gene with primers STE4 P 

BamHI 5’ (5’-CCGGATTCTTGTAGCCCTG TTAGGTTTACC-3’) and STE4 T BamHI 3’ 

(5’-CCGGATTCCAATACATAAG GACGAGCCAGTG-3’), and cloning it into pRS315. 

PB2649 (STE4 URA3 CEN MATa) was also used to restore mating competency, and 

was constructed by sub cloning the STE4 fragment from PB2647 (digested with SmaI 

and NotI) into PB2577 (MATa URA3 CEN, digested with SmaI and NotI).  

8.3 Experimental evolution study 

The experimental evolution study was performed by Anna Selmecki. All 

Saccharomyces cerevisiae strains used in the experimental evolution study were in the 

S288c background. The isogenic ploidy series was generated in a matΔ ste4Δ 

background to eliminate mating and meiosis during the course of the experiment. Either 

a pGAL–CFP or a pGAL–YFP construct was integrated at the TRP1 locus near the 

chromosome IV centromere in a haploid strain (PY5998 and PY5999, respectively). 

These haploid strains were used to generate isogenic diploids, from which isogenic 

tetraploids were then derived. This procedure ensured that all copies of chromosome IV 

had the capacity to express the inducible fluorescent marker even if the strains became 

aneuploid. Mating-competent haploids were generated from the matΔ ste4Δ ancestor, 

PY5998, by transformation with either plasmid PB2647 (CEN– LEU2–STE4) or PB2648 

(CEN–URA3–STE4–Matα). Zygotes from mating-competent haploids were isolated by 

micromanipulation to obtain diploid CFP ancestors (PY6008 and PY6022). Similarly, 

zygotes from mating-competent diploids were isolated by micro-manipulation to obtain 

tetraploid CFP ancestors (PY6031 and PY6032). The same mating scheme was 
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performed for the YFP lineage starting with PY5999 to generate diploid YFP (PY6006 

and PY6014) and tetraploid YFP (PY6040 and PY6045) ancestors.  

The ancestor strains were grown to saturation from the -80°C stock, in Synthetic 

Complete + 2% glucose. The cell density of each ancestor was determined using a 

haemocytometer and an automated cell counter (Vi-Cell-XR from Beckman Coulter). An 

equal number of YFP and CFP cells of the same ploidy were diluted into fresh Synthetic 

Complete + 2% raffinose medium, and combined into a single tube for an initial 

concentration of 1x105 cells per millilitre. The 50:50 YFP:CFP culture was distributed 

equally into the wells of a 96-deep-well plate (1 ml per well, U-bottom block plate from 

Qiagen). Seven or eight wells were not inoculated, to detect cross-well contamination 

during the experiment. The plates were covered with ‘breathe-EASIER’ tape (Electron 

Microscopy Science) and incubated at 30°C on a 96-well plate shaker (Union Scientific). 

Two plates of haploid and three plates of diploid and tetraploid cells were analyzed, 

representing 173 parallel haploid evolutions, 264 parallel diploid evolutions, and 265 

parallel tetraploid evolutions.  

At 24 h intervals, the cells were resuspended (by pipetting) and diluted into fresh 

Synthetic Complete + 2% raffinose medium. The dilution factor was determined for each 

ploidy type based on the initial strain fitness to maintain an equivalent population size, 

as reported previously (Hegreness 2006). The number of cells transferred each day was 

calculated by counting the number of cells in ten replicate wells of each ploidy before 

and after dilution with an automated cell counter (Vi-Cell-XR from Beckman Coulter), 

and averaged across 3 consecutive days. The dilution factor for the haploid, diploid, and 
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tetraploid experiments was 1/100, 1/50, and 1/33, respectively. This corresponds to 

6.64, 5.64, and 5.04 generations per day (Hegreness 2006).  

The number of CFP and YFP cells in each population was measured at the same 

time each day. First, expression of the fluorescent proteins was induced by transferring 

10 ml of the overnight culture into 200 ml Synthetic Complete + 2% galactose medium 

for 4 h at 30°C. The number of CFP- or YFP-expressing cells was determined using a 

BD LSRII flow cytometer high-throughput plate reader (10,000 cells were analyzed from 

each well). Pacific Blue and FITC filters were used to detect CFP and YFP, respectively. 

All experiments were passaged for 250 generations, but daily acquisition of CFP:YFP 

ratios was not always continued to the 250th generation.  

To ensure that the flow cytometer measurement and the galactose induction of 

CFP and YFP was an accurate reflection of the size of these populations, the ratio of 

CFP:YFP cells was determined by both flow cytometry and microscopy, and the ratio 

was determined both before and after galactose induction. To do this, we combined 

overnight cultures of the 1N, 2N, and 4N ancestor CFP and YFP strains at three 

different ratios (nine populations in total) and analyzed the ratios in two ways. First, for 

an aliquot of the mixture, we induced the expression of the fluorescent proteins with 2% 

galactose for 4 h and analyzed 10,000 cells using flow cytometry. In parallel, we also 

added 2% galactose for 4 h and then counted about 300 cells by fluorescence 

microscopy. Finally, to ensure that the induction with 2% galactose did not alter the 

CFP:YFP ratio, a portion of the population was used to determine the number of CFP 

and YFP cells in the population before adding galactose to the medium. To do this, cells 

from each population were struck for single colonies on YPD plates for 2 days. Ninety-
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six colonies were chosen randomly from each plate and added to a single well of a 96-

well plate containing Synthetic Complete + 2% galactose. The fluorescence of each 

colony was determined by flow cytometry, and the percentage YFP of the initial 

population was determined. There was a strong correlation between the percentage 

YFP-expressing cells obtained from all three measurements: including the flow 

cytometer and fluorescence microscopy (Pearson correlation coefficient = 0.979), and 

both before and after galactose induction (Pearson correlation coefficient = 0.985).  

Finally, frozen stocks of the evolution experiments were made at 3- to 4-day 

intervals throughout the experiment. At the end of each experiment, single colony 

clones were isolated and used for competitive fitness assays, flow cytometry analysis of 

ploidy, and preparation of DNA for aCGH and whole genome sequencing.  
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9 MUTATIONS IDENTIFIED IN THE EVOLVED CLONES BY WGS 

Evolved 
Clone Position Allele 

Change ORF Gene 
Name Type Amino 

Acid  
Sequencing 

Method 
1N_101 chrIV 113135 G->T YDL194W SNF3 NonSYN G519C HiSeq2500 
1N_101 chrXVI 793611 G->A YPR130C  NonSYN T56M HiSeq2500 
1N_102 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_103 chrIV 590687 G->C YDR072C IPT1 NonSYN C219W HiSeq2500 
1N_104 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_104 chrXIII 235275 G->T YML018C  SYN N/A HiSeq2500 
1N_104 chrXVI 421710 C->T YPL070W MUK1 NonSYN Q256Stop HiSeq2500 
1N_105 chrIV 1015664 G->GT YDR277C MTH1 FrameShift  HiSeq2500 
1N_105 chrIV 1015670 C->G YDR277C MTH1 SYN N/A HiSeq2500 
1N_105 chrXV 133333 T->A YOL098C  NonSYN N836Y HiSeq2500 
1N_105 chrXV 302669 C->T YOL013C HRD1 NonSYN W123Stop HiSeq2500 
1N_105 chrXV 509038 T->C YOR098C NUP1 SYN N/A HiSeq2500 
1N_105 chrXV 620188 G->C YOR153W PDR5 SYN N/A HiSeq2500 
1N_106 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_106 chrVIII 366177 C->T YHR131C  SYN N/A HiSeq2500 
1N_108 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_108 chrXIV 267819 G->T YNL197C WHI3 SYN N/A HiSeq2500 
1N_109 chrIV 1014703 T->A YDR277C MTH1 NonSYN K333Stop HiSeq2500 
1N_110 chrIV 1015493 GTT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_111 chrIV 1014599 CT->C YDR277C MTH1 FrameShift  HiSeq2500 
1N_112 chrIV 1015302 GA->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_112 chrXI 87233 C->G YKL188C PXA2 NonSYN G520A HiSeq2500 
1N_112 chrXII 1051603 T->C YLR454W FMP27 SYN N/A HiSeq2500 
1N_113 chrXIII 410221 A->T YMR070W MOT3 NonSYN R357Stop HiSeq2500 
1N_114 chrXIII 409953 TC->T YMR070W MOT3 FrameShift  HiSeq2500 
1N_116 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_117 chrIV 590649 A->T YDR072C IPT1 NonSYN V232D HiSeq2500 
1N_118 chrIV 113043 C->A YDL194W SNF3 NonSYN A488D HiSeq2500 
1N_118 chrIX 308203 C->T YIL025C  NonSYN R124Q HiSeq2500 
1N_120 chrX 375167 G->T YJL038C LOH1 NonSYN T201K HiSeq2500 
1N_120 chrXIII 410332 A->T YMR070W MOT3 NonSYN K394Stop HiSeq2500 
1N_120 chrXVI 287670 C->G YPL140C MKK2 NonSYN R455T HiSeq2500 
1N_121 chrIV 112989 T->A YDL194W SNF3 NonSYN V470D HiSeq2500 
1N_121 chrXI 100694 A->C YKL182W FAS1 SYN N/A HiSeq2500 
1N_122 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_124 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_124 chrV 241395 A->T YER045C ACA1 NonSYN Y36N HiSeq2500 
1N_124 chrVII 92569 A->G YGL211W NCS6 SYN N/A HiSeq2500 
1N_124 chrIX 173470 G->C YIL102C-A  NonSYN S40R HiSeq2500 
1N_127 chrII 528787 T->C YBR142W MAK5 SYN N/A HiSeq2500 
1N_127 chrIV 1014876 G->T YDR277C MTH1 NonSYN A275D HiSeq2500 
1N_127 chrX 29781 G->A Intergenic N/A N/A N/A HiSeq2500 
1N_127 chrXIV 361234 A->G YNL139C THO2 NonSYN S1496P HiSeq2500 
1N_128 chrIV 1014640 GT->G YDR277C MTH1 FrameShift  HiSeq2500 
1N_128 chrXIII 400289 T->A YMR065W KAR5 NonSYN F197I HiSeq2500 
1N_131	
   chrIV	
   272666	
   G-­‐>A	
   YDL105W	
   NSE4	
   NonSYN	
   G93D	
   MiSeq	
  	
  
1N_131	
   chrIV	
   1014641	
   GT-­‐>G	
   YDR277C	
   MTH1	
   Frameshirt	
   I353fs	
   MiSeq	
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Evolved 
Clone Position Allele 

Change ORF Gene 
Name Type Amino 

Acid  
Sequencing 

Method 
1N_131	
   chrXII	
   558097	
   T-­‐>G	
   YLR207W	
   HRD3	
   Nonsense	
   T436Stop	
   MiSeq	
  
1N_131	
   chrXIII	
   247081	
   G-­‐>T	
   YML011C	
   RAD33	
   SYN	
   N/A	
   MiSeq	
  	
  
1N_131	
   chrXIII	
   787006	
   G-­‐>A	
   YMR259C	
   TRM732	
   NonSYN	
   S626N	
   MiSeq	
  	
  
1N_132	
   chrII	
   760672	
   T-­‐>C	
   YBR278W	
   DPB3	
   NonSYN	
   D128G	
   MiSeq	
  	
  
1N_132	
   chrIV	
   591299	
   T-­‐>A	
   YDR072C	
   IPT1	
   Nonsense	
   T15Stop	
   MiSeq	
  	
  
1N_132	
   chrXVI	
   788744	
   G-­‐>T	
   YPR125W	
   YLH47	
   NonSYN	
   P263Q	
   MiSeq	
  
2N_202 chrIV 112895 G->A YDL194W SNF3 NonSYN G439R HiSeq2500 
2N_202 chrIV 1019186 T->C Intergenic N/A N/A N/A HiSeq2500 
2N_202 chrVII 424078 T->C YGL039W  NonSYN S38P HiSeq2500 
2N_203 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_204 chrII 213717 G->C YBL007C SLA1 NonSYN Q885E HiSeq2500 
2N_204 chrII 523068 C->A YBR140C IRA1 SYN N/A HiSeq2500 
2N_204 chrIV 213995 C->T YDL138W RGT2 NonSYN S215F HiSeq2500 
2N_204 chrX 379508 C->A YJL036W SNX4 SYN N/A HiSeq2500 
2N_204 chrXV 325765 G->A YOL001W PHO80 SYN N/A HiSeq2500 
2N_205 chrXVI 192641 A->G YPL188W POS5 NonSYN N413D HiSeq2500 
2N_206 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_206 chrV 89212 A->T YEL032W MCM3 NonSYN K759M HiSeq2500 
2N_206 chrXV 658941 C->A YOR174W MED4 NonSYN P65Q HiSeq2500 
2N_207 chrIV 112952 T->C YDL194W SNF3 NonSYN F458L HiSeq2500 
2N_207 chrIV 407030 C->G YDL025C RTK1 NonSYN D59H HiSeq2500 
2N_208 chrIV 112238 C->G YDL194W SNF3 NonSYN Q220E HiSeq2500 
2N_208 chrVII 378678 A->G YGL066W SGF73 NonSYN E356G HiSeq2500 
2N_208 chrXV 544522 G->T Intergenic N/A N/A N/A HiSeq2500 
2N_209 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_209 chrXV 536313 T->A YOR113W AZF1 SYN N/A HiSeq2500 
2N_210 chrIV 111882 G->C YDL194W SNF3 NonSYN G101A HiSeq2500 
2N_210 chrV 452165 C->T YER140W EMP65 SYN N/A HiSeq2500 
2N_211 chrII 94117 C->A YBL067C UBP13 NonSYN V590F HiSeq2500 
2N_211 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_211 chrVII 200627 A->T YGL160W AIM14 NonSYN I21F HiSeq2500 

2N_212 NONE 
Found 

NONE 
Found 

NONE 
Found 

NONE 
Found N/A NONE 

Found 
NONE 
Found HiSeq2500 

2N_213 chrIV 111882 G->C YDL194W SNF3 NonSYN G101A HiSeq2500 
2N_213 chrXIII 499722 C->A Intergenic N/A N/A N/A HiSeq2500 
2N_214 chrIV 112221 C->A YDL194W SNF3 NonSYN A214E HiSeq2500 
2N_214 chrXII 950618 G->T Intergenic N/A N/A N/A HiSeq2500 
2N_214 chrXIV 637715 C->A YNR006W VPS27 NonSYN H243N HiSeq2500 
2N_218 chrXI 192209 A->T YKL133C  NonSYN Y287Stop HiSeq2500 
2N_218 chrXIII 406673 G->T YMR068W AVO2 NonSYN C124F HiSeq2500 
2N_219 chrIV 112954 C->A YDL194W SNF3 NonSYN F458L HiSeq2500 
2N_219 chrIV 771695 T->A Intergenic N/A N/A N/A HiSeq2500 
2N_221 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_221 chrVIII 48667 G->C Intergenic N/A N/A N/A HiSeq2500 
2N_221 chrVIII 489018 T->G YHR194W MDM31 NonSYN F121C HiSeq2500 
2N_221 chrXIV 258430 C->T YNL204C SPS18 SYN N/A HiSeq2500 
2N_222 chrIV 112830 G->C YDL194W SNF3 NonSYN R417T HiSeq2500 
2N_222 chrIV 1226409 G->C YDR375C BCS1 NonSYN L41V HiSeq2500 
2N_222 chrXIII 237806 C->A Intergenic N/A N/A N/A HiSeq2500 
2N_222 chrXVI 448343 C->G YPL058C PDR12 NonSYN G678R HiSeq2500 
2N_223 chrII 42494 C->T YBL097W BRN1 NonSYN A556V HiSeq2500 
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Evolved 
Clone Position Allele 

Change ORF Gene 
Name Type Amino 

Acid  
Sequencing 

Method 
2N_223 chrIV 111913 T->G YDL194W SNF3 NonSYN F111L HiSeq2500 
2N_223 chrIV 800105 G->C YDR170C SEC7 NonSYN P706A HiSeq2500 
2N_223 chrX 153262 A->G Intergenic N/A N/A N/A HiSeq2500 
2N_223 chrXI 161378 C->T Intergenic N/A N/A N/A HiSeq2500 
2N_223 chrXII 41954 G->A YLL048C YBT1 SYN N/A HiSeq2500 
2N_223 chrXV 897608 G->T YOR310C NOP58 SYN N/A HiSeq2500 
2N_224 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_224 chrVI 120303 C->T YFL008W SMC1 NonSYN Q294Stop HiSeq2500 
2N_224 chrXII 99093 C->A YLL022C HIF1 NonSYN D370Y HiSeq2500 
2N_224 chrXIV 130327 G->A YNL271C BNI1 SYN N/A HiSeq2500 
2N_224 chrXV 1074817 G->T YOR389W  NonSYN E203Stop HiSeq2500 
2N_225 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_225 chrIV 1107015 G->A YDR320C SWA2 NonSYN S362F HiSeq2500 
2N_226 chrIV 111920 G->T YDL194W SNF3 NonSYN D114Y HiSeq2500 
2N_226 chrV 88495 T->G YEL032W MCM3 NonSYN F520C HiSeq2500 
2N_226 chrX 589861 A->C YJR089W BIR1 NonSYN N718H HiSeq2500 
2N_227 chrIV 112954 C->A YDL194W SNF3 NonSYN F458L HiSeq2500 
2N_227 chrIV 244559 T->C YDL122W UBP1 NonSYN S670P HiSeq2500 
2N_227 chrVII 69728 T->G YGL227W VID30 NonSYN Y20D HiSeq2500 
2N_227 chrX 135085 G->A YJL153C INO1 NonSYN A282V HiSeq2500 
2N_227 chrXV 326628 AT->A Intergenic N/A N/A N/A HiSeq2500 
2N_227 chrXV 581532 T->A Intergenic N/A N/A N/A HiSeq2500 
2N_227 chrXVI 221645 A->G YPL174C NIP100 SYN N/A HiSeq2500 
2N_232 chrXIII 746160 T->A Intergenic N/A N/A N/A SOLiD 
2N_233 chrI 103998 T->A YAL024C LTE1 NonSYN S626C SOLiD 
2N_233 chrIV 112896 G->A YDL194W SNF3 NonSYN G439E SOLiD 
4N_304 chrIV 112896 G->T YDL194W SNF3 NonSYN G439V HiSeq2500 
4N_304 chrV 79234 A->T YEL040W UTR2 SYN N/A HiSeq2500 
4N_304 chrXI 3532 C->G YKL222C  NonSYN S697T HiSeq2500 
4N_304 chrXIII 23797 G->C Intergenic N/A N/A N/A HiSeq2500 
4N_304 chrXIII 653210 T->G Intergenic N/A N/A N/A HiSeq2500 
4N_304 chrXV 106555 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_305 chrIV 57594 T->C YDL223C HBT1 NonSYN E938G HiSeq2500 
4N_305 chrIV 112817 G->A YDL194W SNF3 NonSYN E413K HiSeq2500 
4N_305 chrIV 415931 G->A YDL020C RPN4 NonSYN T259M HiSeq2500 
4N_305 chrVI 34264 C->G YFL050C ALR2 NonSYN G529R HiSeq2500 
4N_305 chrXIII 334443 G->C YMR031C EIS1 SYN N/A HiSeq2500 
4N_305 chrXIV 589741 C->G YNL023C FAP1 NonSYN Q474H HiSeq2500 
4N_305 chrXVI 122596 C->A YPL226W NEW1 NonSYN S277Y HiSeq2500 
4N_305 chrXVI 215384 T->G Intergenic N/A N/A N/A HiSeq2500 
4N_306 chrX 712087 A->G Intergenic N/A N/A N/A HiSeq2500 
4N_306 chrXI 551081 T->G Intergenic N/A N/A N/A HiSeq2500 
4N_306 chrXIII 504322 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_307 chrIV 112266 G->A YDL194W SNF3 NonSYN R229K HiSeq2500 
4N_307 chrXVI 110144 G->T YPL231W FAS2 NonSYN G498V HiSeq2500 
4N_307 chrXVI 341104 G->A YPL110C GDE1 NonSYN A1212V HiSeq2500 
4N_309 chrIII 152835 A->T YCR019W MAK32 NonSYN M1L HiSeq2500 
4N_309 chrIV 112734 C->G YDL194W SNF3 NonSYN T385R HiSeq2500 
4N_309 chrIV 779067 G->A YDR161W  SYN N/A HiSeq2500 
4N_309 chrVIII 509672 T->C YHR205W SCH9 NonSYN S104P HiSeq2500 
4N_309 chrVIII 554783 C->A YHR216W IMD2 NonSYN P130T HiSeq2500 
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Evolved 
Clone Position Allele 

Change ORF Gene 
Name Type Amino 

Acid  
Sequencing 

Method 
4N_310 chrIV 112268 G->A YDL194W SNF3 NonSYN G230S HiSeq2500 
4N_310 chrVII 103390 G->A YGL206C CHC1 SYN N/A HiSeq2500 
4N_310 chrVIII 30115 C->T YHL035C VMR1 SYN N/A HiSeq2500 
4N_310 chrXIII 315766 C->A YMR020W FMS1 NonSYN H131N HiSeq2500 
4N_310 chrXIII 463918 A->AT Intergenic N/A N/A N/A HiSeq2500 
4N_310 chrXIII 756312 C->A Intergenic N/A N/A N/A HiSeq2500 
4N_310 chrXIV 380225 A->C Intergenic N/A N/A N/A HiSeq2500 
4N_311 chrIV 112251 C->G YDL194W SNF3 NonSYN T224R HiSeq2500 
4N_311 chrVI 15959 C->T Intergenic N/A N/A N/A HiSeq2500 
4N_311 chrVII 617090 T->G YGR062C COX18 NonSYN M65L HiSeq2500 
4N_311 chrIX 71149 C->T YIL147C SLN1 NonSYN G769R HiSeq2500 
4N_311 chrXIV 137168 C->T YNL270C ALP1 SYN N/A HiSeq2500 
4N_312 chrVII 84042 C->A YGL218W  NonSYN P132T HiSeq2500 
4N_313 chrIV 112896 G->T YDL194W SNF3 NonSYN G439V HiSeq2500 

4N_313 chrIV 488849 AACCACT
GG->A Intergenic N/A N/A N/A HiSeq2500 

4N_313 chrV 79234 A->T YEL040W UTR2 SYN N/A HiSeq2500 
4N_313 chrV 304535 A->T YER073W ALD5 NonSYN N170I HiSeq2500 
4N_313 chrXI 296675 G->T YKL073W LHS1 NonSYN G201V HiSeq2500 
4N_313 chrXIII 23797 G->C Intergenic N/A N/A N/A HiSeq2500 
4N_313 chrXIII 653210 T->G Intergenic N/A N/A N/A HiSeq2500 
4N_313 chrXV 811463 C->A YOR257W CDC31 NonSYN N152K HiSeq2500 
4N_314 chrIII 84937 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_314 chrIV 229797 C->A Intergenic N/A N/A N/A HiSeq2500 
4N_314 chrVI 256200 G->C Intergenic N/A N/A N/A HiSeq2500 
4N_314 chrVIII 186070 C->A YHR039C MSC7 NonSYN V245F HiSeq2500 
4N_314 chrIX 277539 C->CTA Intergenic N/A N/A N/A HiSeq2500 
4N_314 chrXII 330455 C->T YLR095C IOC2 NonSYN M554I HiSeq2500 
4N_314 chrXII 820836 G->C YLR345W  NonSYN W109S HiSeq2500 
4N_314 chrXV 881004 C->G YOR301W RAX1 NonSYN F14L HiSeq2500 
4N_315 chrIV 214604 G->A YDL138W RGT2 NonSYN G418D HiSeq2500 
4N_315 chrIV 1389304 G->A YDR464W SPP41 NonSYN R147Q HiSeq2500 
4N_315 chrVI 33920 C->T YFL050C ALR2 SYN N/A HiSeq2500 
4N_315 chrXII 667355 G->A YLR260W LCB5 NonSYN E504K HiSeq2500 
4N_316 chrIV 214594 G->A YDL138W RGT2 NonSYN D415N HiSeq2500 
4N_319 chrVIII 488371 C->CA Intergenic N/A N/A N/A HiSeq2500 
4N_319 chrXII 322378 G->T YLR091W GEP5 SYN N/A HiSeq2500 
4N_319 chrXIII 211720 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_320 chrIV 1154143 T->C Intergenic N/A N/A N/A HiSeq2500 
4N_320 chrIV 1154155 A->G Intergenic N/A N/A N/A HiSeq2500 
4N_320 chrIV 1154200 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_320 chrVII 176888 G->T YGL173C XRN1 NonSYN L1078I HiSeq2500 
4N_321 chrII 667548 G->A YBR222C PCS60 NonSYN P267S HiSeq2500 
4N_321 chrVIII 72849 C->A YHL016C DUR3 NonSYN G465C HiSeq2500 
4N_321 chrIX 277539 C->CTA Intergenic N/A N/A N/A HiSeq2500 
4N_322 chrIV 112982 G->C YDL194W SNF3 NonSYN G468R HiSeq2500 
4N_322 chrVII 328015 A->G Intergenic N/A N/A N/A HiSeq2500 
4N_322 chrXV 1013114 G->GA Intergenic N/A N/A N/A HiSeq2500 
4N_322 chrXVI 238978 A->T YPL165C SET6 SYN N/A HiSeq2500 
4N_322 chrXVI 868272 G->A YPR162C ORC4 NonSYN P10L HiSeq2500 
4N_323 chrII 92822 C->G YBL068W PRS4 NonSYN I137M HiSeq2500 
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Evolved 
Clone Position Allele 
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Acid  
Sequencing 
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4N_323 chrIV 112251 C->G YDL194W SNF3 NonSYN T224R HiSeq2500 
4N_323 chrIV 617159 C->T YDR086C SSS1 NonSYN A4T HiSeq2500 
4N_323 chrXII 856265 T->A Intergenic N/A N/A N/A HiSeq2500 
4N_324 chrX 338725 G->C YJL052W TDH1 NonSYN C154S HiSeq2500 
4N_324 chrXI 366773 C->G YKL038W RGT1 NonSYN S509Stop HiSeq2500 
4N_324 chrXII 127882 C->G YLL011W SOF1 NonSYN P121A HiSeq2500 
4N_327 chrIV 1014738 C->A YDR277C MTH1 NonSYN C321F HiSeq2500 
4N_327 chrVI 92904 G->T YFL023W BUD27 NonSYN A641S HiSeq2500 
4N_328 chrII 804908 C->A Intergenic N/A N/A N/A HiSeq2500 
4N_328 chrIV 1154247 G->A YDR342C HXT7 SYN N/A HiSeq2500 
4N_328 chrV 465825 A->C YER148W SPT15 SYN N/A HiSeq2500 
4N_328 chrX 384974 G->C YJL033W HCA4 NonSYN G382R HiSeq2500 
4N_328 chrXII 304261 T->A YLR086W SMC4 NonSYN L673Stop HiSeq2500 
4N_328 chrXVI 44175 A->C YPL264C  NonSYN V57G HiSeq2500 
4N_329 chrII 278810 GT->G Intergenic N/A N/A N/A HiSeq2500 
4N_329 chrV 465825 A->C YER148W SPT15 SYN N/A HiSeq2500 
4N_329 chrVII 833536 G->A YGR168C  NonSYN R318W HiSeq2500 
4N_329 chrXI 61897 C->A YKL203C TOR2 NonSYN M488I HiSeq2500 
4N_329 chrXV 961779 G->A YOR341W RPA190 NonSYN V266I HiSeq2500 
4N_331 chrI 113939 C->T YAL020C ATS1 SYN N/A HiSeq2500 
4N_331 chrIV 112988 G->T YDL194W SNF3 NonSYN V470F HiSeq2500 
4N_331 chrXVI 309088 G->A YPL127C HHO1 SYN N/A HiSeq2500 
4N_332 chrIV 1154143 T->C Intergenic N/A N/A N/A HiSeq2500 
4N_332 chrIV 1154155 A->G Intergenic N/A N/A N/A HiSeq2500 
4N_332 chrIV 1154200 G->A Intergenic N/A N/A N/A HiSeq2500 
4N_332 chrV 505900 C->T YER164W CHD1 NonSYN Q172Stop HiSeq2500 
4N_332 chrVII 80102 G->A YGL223C COG1 NonSYN T88I HiSeq2500 
4N_332 chrIX 248488 C->G Intergenic N/A N/A N/A HiSeq2500 
4N_332 chrXI 162068 A->C YKL154W SRP102 NonSYN K155Q HiSeq2500 
4N_332 chrXVI 243118 G->T Intergenic N/A N/A N/A HiSeq2500 
4N_332 chrXVI 341131 T->G YPL110C GDE1 NonSYN D1203A HiSeq2500 
4N_333 chrIII 50511 C->T YCL041C  SYN N/A HiSeq2500 
4N_333 chrVIII 234713 A->C Intergenic N/A N/A N/A HiSeq2500 
4N_333 chrXVI 122727 T->G YPL226W NEW1 NonSYN F321V HiSeq2500 
4N_334 chrV 465825 A->C YER148W SPT15 SYN N/A SOLiD 
4N_334 chrVII 1029503 A->C YGR270W YTA7 NonSYN M710L SOLiD 
4N_334 chrXI 61897 C->A YKL203C TOR2 NonSYN M488I SOLiD 
4N_335 chrIV 609668 C->T YDR081C PDC2 NonSYN V138I SOLiD 
4N_335 chrVI 133989 G->T YFL004W VTC2 NonSYN A729S SOLiD 
4N_335 chrVII 1023892 G->A YGR266W N/A NonSYN A411T SOLiD 
4N_335 chrXV 332208 G->A YOR003W YSP3 SYN N/A SOLiD 
4N_335 chrXVI 671171 C->A YPR056W TFB4 NonSYN Q17K SOLiD 
4N_335 chrVIII 23427 A->C YHL039W EFM1 NonSYN I550L SOLiD 
4N_336 chrVII 852082 T->A YGR178C PBP1 NonSYN F380Y SOLiD 
4N_336 chrXI 103753 G->T YKL182W FAS1 NonSYN E1026D SOLiD 
4N_336 chrVIII 375275 C->A Intergenic N/A N/A N/A SOLiD 
4N_337 chrX 722854 T->A YJR153W PGU1 NonSYN I17N SOLiD 
4N_337 chrII 289179 G->T Intergenic N/A N/A N/A SOLiD 
4N_337 chrIV 995263 G->C YDR263C DIN7 NonSYN T90S SOLiD 
4N_337 chrVII 892626 G->A YGR197C SNG1 NonSYN A507V SOLiD 
4N_337 chrXIII 646177 C->T YMR191W SPG5 Nonsense Q175Stop SOLiD 
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Table 9-1 Mutations identified in the evolved clones 
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1N_101 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
 

1N_102 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_103 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_104 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 
1N_105 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_106 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_107 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH 
1N_108 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_109 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_110 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 
1N_111 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_112 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_113 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 
1N_114 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 
1N_116 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_117 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_118 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_120 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_121 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_122 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_123 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH 
1N_124 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_127 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_128 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Illumina 
1N_131 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 
1N_132 1N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 CGH & Illumina 

Table 10-1 Chromosome copy number in evolved haploids 
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2N_201 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH 
2N_202 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_203 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_204 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_205 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_206 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_207 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_208 2N 2 2 2 2 2.1 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_209 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_210 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_211 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_212 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH & Illumina 
2N_213 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_214 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_217 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH 
2N_218 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH & Illumina 
2N_219 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_221 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_222 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_223 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_224 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_225 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_226 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_227 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
2N_228 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH 
2N_230 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH 
2N_232 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH & SOLiD 
2N_233 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 CGH & SOLiD 

Table 10-2 Chromosome copy number in the evolved diploids 
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4N_301 4N- 4 4 4 3.5 4 4 4 4 4 4 4 4 4 4 4 4 CGH 
4N_302 3N+/- 2 4 2 3 4 3 3 2 3 2 4 3 4 4 3 3 CGH 
4N_304 3N+ 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 3 CGH & Illumina 
4N_305 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & Illumina 
4N_306 3N+/- 3 2 2 2 3 2 3 3 4 3 2 3 3 3 2 2 Illumina 
4N_309 4N-3N 3 4 4 3 3 3 4 4 4 3 3 4 4 4 3 3 Illumina 
4N_310 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & Illumina 
4N_313 3N+ 4 3 3 3 3 3 3 4 3 3 3 4 4 3 3 3 CGH & Illumina 
4N_314 3N-2N 3 2 2 2 3 2 3 3 2 3 2 3 3 3 2.5 2 Illumina 
4N_315 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & Illumina 
4N_316 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & Illumina 
4N_317 4N+/- 3 4 3 3 4 4 4 4 3 4 4 4 5 4 3 3 CGH 
4N_318 3N- 3 2 2 2 3 2 3 3 3 3 2 3 3 3 2 3 CGH 
4N_319 3N+ 3 4 3 3 3 3 4 4 3 3 3 4 4 4 3 3 CGH & Illumina 
4N_320 3N+ 3 4 4 3 3 3 3 3 3 3 4 3 4 3 3 3 CGH & Illumina 
4N_321 2N+ 2 2 2 2 3 2 3 3 2 2 2 3 3 3 2 2 CGH & Illumina 
4N_322 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 Illumina 
4N_323 4N- 3 4 4 4 4 4 3 4 4 4 4 4 4 4 3 3 Illumina 
4N_327 3N+ 3 3 3 3 3 3 3 3 4 3 3 4 4 4 3 3 Illumina 
4N_328 4N+ 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 Illumina 
4N_329 3N+ 3 3 4 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & Illumina 
4N_330 3N+ 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 3 CGH 
4N_331 2N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Illumina 
4N_332 4N+ 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 Illumina 
4N_333 4N+ 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 4 Illumina 
4N_334 3N+ 3 3 3 3 3 3 3 3 4 3 3 3 4 4 3 3 CGH & SOLiD 
4N_335 4N+/- 4 4 4 3.5 4 4 4 4 4 4 4 4 5 3 4 4 CGH & SOLiD 
4N_336 4N+ 4 4 4 4 4 4 4 4 4 4 4 6 5 4 4 4 CGH & SOLiD 
4N_337 4N 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 CGH & SOLiD 
4N_338 3N+ 3 3 4 3 3 3 3 3 3 3 3 3 4 3 3 3 CGH 

Table 10-3 Chromosome copy number in evolved tetraploids 
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11 MUTATIONS BY TYPE 
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1N_101 1 0 2 0 0 0 0 0 0 2 
1N_102 1 0 0 0 0 1 0 0 1 1 
1N_103 1 0 1 0 0 0 0 0 0 1 
1N_104 1 1 0 0 1 1 0 0 2 3 
1N_105 1 3 1 0 1 1 0 0 2 6 
1N_106 1 1 0 0 0 1 0 0 1 2 
1N_108 1 1 0 0 0 1 0 0 1 2 
1N_109 1 0 0 0 1 0 0 0 1 1 
1N_110 1 0 0 0 0 1 0 0 1 1 
1N_111 1 0 0 0 0 1 0 0 1 1 
1N_112 1 1 1 0 0 1 0 0 1 3 
1N_113 1 0 0 0 1 0 0 0 1 1 
1N_114 1 0 0 0 0 1 0 0 1 1 
1N_116 1 0 0 0 0 1 0 0 1 1 
1N_117 1 0 1 0 0 0 0 0 0 1 
1N_118 1 0 2 0 0 0 0 0 0 2 
1N_120 1 0 2 0 1 0 0 0 1 3 
1N_121 1 1 1 0 0 0 0 0 0 2 
1N_122 1 0 0 0 0 1 0 0 1 1 
1N_124 1 1 2 0 0 1 0 0 1 4 
1N_127 1 1 2 1 0 0 0 0 0 4 
1N_128 1 0 1 0 0 1 0 0 1 2 
1N_131 1 1 2 0 1 1 0 0 2 5 
1N_132 1 0 2 0 1 0 1 1 1 4 
Average na 0.4583 0.8333 0.0417 0.2917 0.5833 0.0417 0.0417 0.8750 2.2500 

SD na 0.7059 0.8498 0.1998 0.4545 0.4930 0.1998 0.1998 0.5995 1.4216 
SEM na 0.1441 0.1735 0.0408 0.0928 0.1006 0.0408 0.0408 0.1224 0.2902 

Table 11-1 Haploid mutations by type 
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2N_202 2 0 1 1 0 0 0 0 0 2 1 
2N_203 2 0 1 0 0 0 0 0 0 1 0.5 
2N_204 2 3 2 0 0 0 0 0 0 5 2.5 
2N_205 2 0 1 0 0 0 1 1 0 2 1 
2N_206 2 0 3 0 0 0 0 0 0 3 1.5 
2N_207 2 0 2 0 0 0 1 1 0 3 1.5 
2N_208 2 0 2 1 0 0 0 1 0 4 2 
2N_209 2 1 1 0 0 0 0 0 0 2 1 
2N_210 2 1 1 0 0 0 0 0 0 2 1 
2N_211 2 0 3 0 0 0 0 0 0 3 1.5 
2N_212 2 0 0 0 0 0 1 1 0 1 0.5 
2N_213 2 0 1 1 0 0 0 0 0 2 1 
2N_214 2 0 1 2 0 0 0 0 0 3 1.5 
2N_218 2 0 1 0 1 0 1 1 1 3 1.5 
2N_219 2 0 1 1 0 0 0 0 0 2 1 
2N_221 2 1 2 1 0 0 0 0 0 4 2 
2N_222 2 0 3 1 0 0 0 0 0 4 2 
2N_223 2 2 3 2 0 0 0 0 0 7 3.5 
2N_224 2 1 2 0 2 0 0 0 2 5 2.5 
2N_225 2 0 2 0 0 0 0 0 0 2 1 
2N_226 2 0 3 0 0 0 0 0 0 3 1.5 
2N_227 2 1 4 2 0 0 0 0 0 7 3.5 
2N_232 2 0 0 1 0 0 1 1 0 2 1 
2N_233 2 0 2 0 0 0 0 0 0 2 1 
Average na 0.417 1.750 0.542 0.125 0.000 0.208 0.250 0.125 3.083 1.542 

SD na 0.759 1.010 0.706 0.439 0.000 0.406 0.433 0.439 1.579 0.789 
SEM na 0.155 0.206 0.144 0.090 0.000 0.083 0.088 0.090 0.322 0.161 

Table 11-2 Diploid mutations by type 
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4N_304 3.1 1 2 3 0 0 0 0 0 6 1.95 
4N_305 3.1 1 6 1 0 0 0 0 0 8 2.62 
4N_306 2.7 0 0 3 0 0 1 1 0 4 1.49 
4N_307 3.6 0 3 0 0 0 0 0 0 3 0.82 
4N_309 3.4 1 4 0 0 0 0 0 0 5 1.46 
4N_310 3.0 2 2 3 0 0 0 0 0 7 2.30 
4N_311 3.5 1 3 1 0 0 0 0 0 5 1.44 
4N_312 3.8 0 1 0 0 0 1 1 0 2 0.52 
4N_313 3.1 1 4 3 0 0 0 0 0 8 2.59 
4N_314 2.4 0 4 4 0 0 0 0 0 8 3.27 
4N_315 3.1 1 2 0 0 0 0 0 0 3 0.97 
4N_316 3.0 0 1 0 0 0 0 0 0 1 0.33 
4N_319 3.3 1 0 2 0 0 1 1 0 4 1.20 
4N_320 3.1 0 1 3 0 0 1 1 0 5 1.60 
4N_321 2.4 0 2 1 0 0 0 0 0 3 1.27 
4N_322 3.0 1 2 2 0 0 0 0 0 5 1.64 
4N_323 3.7 0 3 1 0 0 0 0 0 4 1.08 
4N_324 2.4 0 2 0 1 0 0 0 1 3 1.24 
4N_327 3.3 0 2 0 0 0 0 0 0 2 0.60 
4N_328 3.8 2 2 1 1 0 1 1 1 7 1.84 
4N_329 3.2 1 3 1 0 0 0 0 0 5 1.58 
4N_331 1.9 2 1 0 0 0 0 0 0 3 1.58 
4N_332 3.7 0 2 5 1 0 1 1 1 9 2.43 
4N_333 3.7 1 1 1 0 0 1 1 0 4 1.08 
4N_334 3.1 1 2 0 0 0 0 0 0 3 0.98 
4N_335 3.8 1 5 0 0 0 1 2 0 8 2.09 
4N_336 4.2 0 2 1 0 0 0 0 0 3 0.72 
4N_337 3.7 0 3 1 1 0 1 1 1 6 1.61 
Average na 0.64 2.32 1.32 0.14 0.00 0.32 0.36 0.14 4.79 1.51 

SD na 0.67 1.36 1.39 0.35 0.00 0.47 0.55 0.35 2.13 0.68 
SEM na 0.13 0.26 0.26 0.07 0.00 0.09 0.10 0.07 0.40 0.13 

Table 11-3 Tetraploid mutations by type 
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12 DIFFERENTIAL EXPRESSION ANALYSIS 

Comparison Up/Down Number of 
Genes 

Gene Name Systematic 
Name 

log2fold 
Change 

Adjusted 
P-value 

2Nv131 Up 10 YFR032C-B YFR032C-B 1.6851 3.89E-02 
ARI1 YGL157W 1.8471 2.34E-02 
MIG2 YGL209W 3.5751 3.59E-09 
ZRT1 YGL255W 3.4939 2.16E-09 
HXT4 YHR092C 4.1865 9.32E-13 
YJL133C-A YJL133C-A 2.2195 2.94E-03 
AHP1 YLR109W 1.6571 4.42E-02 
HXT2 YMR011W 2.0447 2.94E-03 
ZPS1 YOL154W 3.0811 8.38E-07 
YOR170W YOR170W 2.3227 2.77E-02 

Down 40 ACH1 YBL015W -1.9330 6.64E-03 
ECM13 YBL043W -2.4885 1.02E-04 
PHO5 YBR093C -3.7965 1.63E-10 
PHO89 YBR296C -5.9317 1.16E-20 
ADY2 YCR010C -3.0487 3.11E-05 
GIT1 YCR098C -2.0539 1.68E-02 
YDR034W-B YDR034W-B -2.0895 3.99E-02 
PHM6 YDR281C -2.2619 5.37E-03 
ARO10 YDR380W -2.1540 2.85E-02 
GLC3 YEL011W -2.3519 2.47E-04 
RGI1 YER067W -2.9130 1.10E-06 
YGR067C YGR067C -1.8056 3.04E-02 
MGA1 YGR249W -2.3143 9.49E-04 
SPL2 YHR136C -4.3087 5.47E-09 
SIP4 YJL089W -1.9186 4.36E-02 
INO1 YJL153C -1.8284 1.48E-02 
SFC1 YJR095W -2.3766 2.90E-03 
CWP1 YKL096W -1.9839 5.06E-03 
KDX1 YKL161C -1.8020 2.47E-02 
JEN1 YKL217W -2.1123 2.05E-03 
SRL3 YKR091W -2.5077 1.86E-04 
PCK1 YKR097W -2.9014 2.56E-06 
IDP2 YLR174W -1.9988 5.06E-03 
FBP1 YLR377C -3.7139 4.63E-10 
PHO84 YML123C -5.6281 2.53E-20 
YPK2 YMR104C -1.9085 8.32E-03 
SPG4 YMR107W -2.7510 5.22E-04 
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SIP18 YMR175W -1.9061 2.12E-02 
YMR206W YMR206W -1.7883 2.77E-02 
ADH2 YMR303C -2.0736 2.84E-03 
MLS1 YNL117W -1.9159 2.13E-02 
YNL194C YNL194C -3.6059 3.98E-07 
BAG7 YOR134W -2.6079 1.23E-04 
GAC1 YOR178C -2.0107 4.24E-03 
TPO4 YOR273C -1.9461 6.24E-03 
MF(ALPHA)1 YPL187W -2.6379 2.52E-03 
USV1 YPL230W -1.7429 3.30E-02 
CSR2 YPR030W -2.0829 2.58E-03 
OPT2 YPR194C -2.9868 2.45E-05 
YPR195C YPR195C -2.6013 4.42E-02 

2Nv132 Up 9 HXT6 YDR343C 2.5943 7.88E-05 
SIT1 YEL065W 2.0634 7.19E-03 
SSA4 YER103W 1.8348 4.32E-02 
BTN2 YGR142W 2.2912 1.40E-03 
RGI2 YIL057C 2.0971 7.19E-03 
YJL133C-A YJL133C-A 2.0553 2.50E-02 
SFC1 YJR095W 2.1158 1.33E-02 
ZPS1 YOL154W 3.0519 3.19E-06 
FDH1 YOR388C 3.4858 1.67E-06 

Down 5 PHO5 YBR093C -2.3542 8.73E-04 
PHO89 YBR296C -2.5382 2.50E-04 
SPL2 YHR136C -2.5414 4.38E-03 
CWP1 YKL096W -3.2988 2.03E-07 
PHO84 YML123C -3.1846 4.90E-07 

2Nv232 Up 9 HXT6 YDR343C 3.5373 4.33E-09 
SIT1 YEL065W 2.2803 1.31E-03 
SSA4 YER103W 3.5539 4.33E-09 
BTN2 YGR142W 4.0458 3.29E-11 
RGI2 YIL057C 2.3128 1.31E-03 
SFC1 YJR095W 2.1988 8.42E-03 
FDH1 YOR388C 4.7959 9.28E-12 
MF(ALPHA)1 YPL187W 2.7006 3.25E-04 
HSP82 YPL240C 2.7678 1.50E-05 

Down 7 PHO5 YBR093C -2.5720 1.28E-04 
PHO89 YBR296C -3.0352 2.94E-06 
GIT1 YCR098C -2.3120 1.16E-02 
GLC3 YEL011W -2.0899 6.03E-03 
SPL2 YHR136C -2.8097 1.29E-03 
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CWP1 YKL096W -2.8648 6.82E-06 
PHO84 YML123C -3.5991 4.33E-09 

2Nv233 Up 4 HXT3 YDR345C 2.8824 5.56E-05 
MIG2 YGL209W 3.0230 2.18E-06 
HXT4 YHR092C 4.6507 2.35E-15 
YJL133C-A YJL133C-A 2.1115 1.82E-02 

Down 7 PHO5 YBR093C -3.4889 6.77E-09 
PHO89 YBR296C -5.6373 1.72E-19 
PHM6 YDR281C -3.3272 4.18E-06 
ARO10 YDR380W -3.0507 3.63E-04 
SPL2 YHR136C -3.6795 1.04E-06 
PHO84 YML123C -6.4446 1.23E-24 
GRE1 YPL223C -2.3684 7.65E-03 

2Nv334 Up 21 NHP6b YBR089C-A 1.8604 1.70E-02 
YDR133C YDR133C 2.2177 1.06E-03 
YDR433W YDR433W 2.2991 6.22E-03 
SIT1 YEL065W 2.6101 4.23E-05 
SPI1 YER150W 1.9167 1.27E-02 
YFR032C-B YFR032C-B 1.9495 8.90E-03 
ZRT1 YGL255W 2.3805 2.97E-04 
YGR025W YGR025W 2.0749 5.31E-03 
YIR016W YIR016W 1.6982 4.98E-02 
TIS11 YLR136C 2.0096 9.10E-03 
YET2 YMR040W 1.7612 4.98E-02 
ISF1 YMR081C 1.8331 1.85E-02 
HOR7 YMR251W-A 2.2956 5.91E-04 
COX7 YMR256C 1.7801 3.16E-02 
NCE103 YNL036W 2.1030 2.95E-03 
YNR014W YNR014W 2.1770 4.49E-03 
HUB1 YNR032C-A 2.0818 6.09E-03 
ZPS1 YOL154W 1.9366 1.76E-02 
FIT2 YOR382W 2.6573 4.23E-05 
FIT3 YOR383C 2.7785 1.18E-05 
FRE5 YOR384W 2.6779 9.63E-05 

Down 11 PHO5 YBR093C -4.1135 4.47E-12 
PHO89 YBR296C -5.7606 4.40E-20 
GIT1 YCR098C -1.9869 3.23E-02 
PHM6 YDR281C -3.4585 2.14E-06 
COS12 YGL263W -3.4451 8.16E-04 
ECL1 YGR146C -2.8371 3.42E-05 
SPL2 YHR136C -4.4747 3.00E-09 
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YHR177W YHR177W -3.5369 5.91E-04 
PHO12 YHR215W -2.9406 9.10E-03 
PHO84 YML123C -8.7704 1.60E-36 
OPT2 YPR194C -2.2986 4.49E-03 

2Nv335 Up 10 YBR085C-A YBR085C-A 1.7864 3.88E-02 
HXT6 YDR343C 3.1740 1.33E-07 
SIT1 YEL065W 1.7962 3.87E-02 
SPI1 YER150W 2.9213 2.68E-06 
BTN2 YGR142W 1.8232 3.69E-02 
YHR138C YHR138C 1.8996 2.03E-02 
YJL133C-A YJL133C-A 2.5168 6.27E-04 
GTO3 YMR251W 2.8562 4.54E-04 
HOR7 YMR251W-A 1.8922 2.03E-02 
FRE5 YOR384W 2.3913 1.20E-03 

Down 12 PHO5 YBR093C -3.7294 5.80E-10 
PHO89 YBR296C -4.6118 5.26E-14 
PHM6 YDR281C -3.3973 2.68E-06 
ATO3 YDR384C -1.9213 2.03E-02 
MIG2 YGL209W -2.4946 9.32E-04 
SPL2 YHR136C -4.2957 8.21E-09 
HMS2 YJR147W -1.9988 1.56E-02 
CWP1 YKL096W -1.8588 2.57E-02 
PTR2 YKR093W -2.5314 2.27E-04 
PHO84 YML123C -6.1548 5.77E-23 
AQR1 YNL065W -2.0554 7.75E-03 
ARG1 YOL058W -2.2693 1.17E-03 

2Nv336 Up 4 HXT6 YDR343C 3.5879 7.73E-10 
SPI1 YER150W 1.7857 3.83E-02 
BTN2 YGR142W 1.9241 1.34E-02 
FBP1 YLR377C 2.1522 2.24E-03 

Down 25 PHO11 YAR071W -3.7218 1.53E-03 
HSP26 YBR072W -2.0355 9.99E-03 
PHO5 YBR093C -4.0691 6.13E-12 
PHO89 YBR296C -5.3176 1.06E-17 
PHM6 YDR281C -4.4040 7.73E-10 
ARO10 YDR380W -2.8562 1.53E-03 
POX1 YGL205W -1.8463 3.90E-02 
MIG2 YGL209W -1.9989 2.42E-02 
ZRT1 YGL255W -2.0160 5.96E-03 
ECL1 YGR146C -2.3450 1.53E-03 
SPL2 YHR136C -5.4629 5.31E-12 
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ARO9 YHR137W -2.0378 1.88E-02 
PHO12 YHR215W -3.4654 1.53E-03 
DCG1 YIR030C -2.0372 4.96E-02 
ARG3 YJL088W -2.3020 4.51E-03 
NCA3 YJL116C -1.8437 4.63E-02 
PTR2 YKR093W -2.0993 5.01E-03 
AQY2 YLL052C -2.7058 1.19E-04 
YLL053C YLL053C -2.2681 4.39E-03 
PHO84 YML123C -8.0761 4.36E-33 
HXT2 YMR011W -2.9188 1.44E-06 
ARG1 YOL058W -3.1130 3.06E-07 
SPS4 YOR313C -3.0066 2.96E-05 
SFG1 YOR315W -1.7642 4.63E-02 
GRE1 YPL223C -2.2932 7.59E-03 

2Nv337 Up 16 GPM2 YDL021W 1.8083 3.65E-02 
HXT6 YDR343C 3.4741 5.95E-09 
YDR461C-A YDR461C-A 1.8473 3.01E-02 
SIT1 YEL065W 2.3949 3.37E-04 
SSA4 YER103W 2.2897 7.77E-04 
YFR032C-B YFR032C-B 1.7722 3.25E-02 
GPG1 YGL121C 1.8888 2.05E-02 
BTN2 YGR142W 2.5903 8.14E-05 
TIS11 YLR136C 1.8021 3.77E-02 
COX7 YMR256C 1.7512 3.77E-02 
MFA2 YNL145W 2.1312 5.64E-03 
FIT2 YOR382W 2.5418 1.57E-04 
FIT3 YOR383C 2.2783 8.88E-04 
FRE5 YOR384W 1.8980 3.25E-02 
MF(ALPHA)1 YPL187W 2.0162 2.36E-02 
HSP82 YPL240C 2.3336 4.71E-04 

Down 17 PHO5 YBR093C -3.2236 1.23E-07 
PHO89 YBR296C -5.8873 8.33E-21 
ADY2 YCR010C -2.3810 3.63E-03 
GIT1 YCR098C -3.5541 4.34E-07 
PHM6 YDR281C -2.8674 1.57E-04 
GLC3 YEL011W -1.7374 3.77E-02 
FMP48 YGR052W -2.0233 2.42E-02 
ECL1 YGR146C -2.3038 1.72E-03 
MGA1 YGR249W -2.0423 8.31E-03 
SPL2 YHR136C -4.1623 2.48E-08 
CWP1 YKL096W -2.3463 4.71E-04 
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PTR2 YKR093W -2.2756 1.20E-03 
MMP1 YLL061W -2.0739 5.08E-03 
PHO84 YML123C -6.9649 1.60E-27 
HXT2 YMR011W -2.2230 1.11E-03 
ADH2 YMR303C -1.9893 7.01E-03 
TPO4 YOR273C -1.9876 7.01E-03 

Table 12-1 Significantly differentially expressed genes in evolved clones relative 
to the 2N ancestor 

Up/Down Number of 
Genes 

Gene name Systematic 
Name 

log2fold 
Change 

Adjusted 
P-value 

  

ATG8 YBL078C 2.0002 4.67E-03 
YBR056W-A YBR056W-A 1.7973 1.76E-02 
YBR085C-A YBR085C-A 1.6987 2.12E-02 
RTC2 YBR147W 1.7115 4.01E-02 
YBR285W YBR285W 2.7896 1.12E-05 
YCL042W YCL042W 1.7232 2.56E-02 
HSP30 YCR021C 2.4241 2.04E-04 
STF1 YDL130W-A 1.5889 3.98E-02 
RTN2 YDL204W 2.0071 4.17E-03 

Up 92 3.0676 1.11E-05 
FMP16 YDR070C 2.3601 9.06E-04 
YDR133C YDR133C 1.9563 4.17E-03 
HSP42 YDR171W 2.4271 1.22E-04 
YDR381C-A YDR381C-A 1.7494 2.17E-02 
Unknown YDR461C-A 1.9986 4.77E-03 
GLC3 YEL011W 1.5824 3.95E-02 
CYC7 YEL039C 2.9930 1.27E-05 
DSF1 YEL070W 2.7339 3.08E-05 
PIC2 YER053C 1.9784 4.17E-03 
GIP2 YER054C 2.4606 1.22E-04 
RGI1 YER067W 2.6995 1.27E-05 
YER079W YER079W 1.6206 4.04E-02 
YER121W YER121W 2.1332 5.43E-03 
SPI1 YER150W 2.8403 6.71E-06 
HSP12 YFL014W 2.1438 1.21E-03 
GSY1 YFR015C 1.9461 4.36E-03 
YFR032C-B YFR032C-B 1.8837 6.65E-03 
PNC1 YGL037C 1.5631 4.18E-02 
STF2 YGR008C 2.2252 5.30E-04 
YGR067C YGR067C 1.8131 1.50E-02 
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Up/Down Number of 
Genes 

Gene name Systematic 
Name 

log2fold 
Change 

Adjusted 
P-value 

CTT1 YGR088W 2.4277 1.96E-04 
SOL4 YGR248W 3.2609 3.42E-07 
AIM17 YHL021C 1.8520 8.54E-03 
RTC3 YHR087W 2.6352 3.59E-05 
YHR097C YHR097C 1.6580 2.79E-02 
CRG1 YHR209W 1.6886 2.77E-02 
RGI2 YIL057C 2.3974 1.96E-04 
XBP1 YIL101C 1.6790 2.67E-02 
COX5b YIL111W 1.5948 4.01E-02 
PRM5 YIL117C 2.8735 1.35E-05 
OM45 YIL136W 1.8909 6.10E-03 
YIR016W YIR016W 1.6973 2.12E-02 
YJL144W YJL144W 1.9419 1.68E-02 
FMP33 YJL161W 2.2391 2.35E-03 
TPK1 YJL164C 1.9892 4.03E-03 
YJR115W YJR115W 1.9910 7.48E-03 
GPX1 YKL026C 1.6526 3.14E-02 
PHD1 YKL043W 1.7811 1.45E-02 
YKL091C YKL091C 1.6409 3.04E-02 
PIR3 YKL163W 2.7380 1.80E-05 
GLG1 YKR058W 1.6647 2.67E-02 
SRL3 YKR091W 2.3271 3.91E-04 
YLR149C YLR149C 1.5863 4.18E-02 
YLR177W YLR177W 1.6489 2.79E-02 
TFS1 YLR178C 1.6132 3.88E-02 
SYM1 YLR251W 1.9133 1.04E-02 
YLR252W YLR252W 2.1910 1.44E-03 
GSY2 YLR258W 1.9153 5.29E-03 
YLR285C-A YLR285C-A 2.2164 4.36E-03 
TMA10 YLR327C 2.5984 2.98E-05 
TSL1 YML100W 2.0043 3.22E-03 
MSC1 YML128C 2.5623 3.76E-05 
YET2 YMR040W 2.1194 2.38E-03 
ISF1 YMR081C 1.7081 1.99E-02 
YMR103C YMR103C 1.6467 2.96E-02 
PGM2 YMR105C 2.2926 3.32E-04 
SPG4 YMR107W 1.8027 3.04E-02 
CMC4 YMR194C-B 1.8124 4.10E-02 
GAD1 YMR250W 1.8971 6.65E-03 
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Up/Down Number of 
Genes 

Gene name Systematic 
Name 

log2fold 
Change 

Adjusted 
P-value 

HOR7 YMR251W-A 2.3176 2.68E-04 
NCE103 YNL036W 2.2358 5.15E-04 
YPT53 YNL093W 1.7562 2.12E-02 
YNL194C YNL194C 3.3111 3.42E-07 
YNL195C YNL195C 2.6856 9.13E-05 
YNR034W-A YNR034W-A 3.4232 7.76E-08 
YNR073C YNR073C 2.3531 4.03E-03 
DDR2 YOL052C-A 3.0185 2.61E-06 
PHM7 YOL084W 1.6791 3.76E-02 
ZEO1 YOL109W 1.7542 1.52E-02 
YOR019W YOR019W 2.1473 2.62E-03 
BAG7 YOR134W 1.9746 5.67E-03 
PNS1 YOR161C 1.6393 3.65E-02 
DCS2 YOR173W 2.5691 4.88E-05 
YOR199W YOR199W 5.3000 5.15E-04 
RNY1 YPL123C 1.6170 3.97E-02 
PXA1 YPL147W 1.8011 1.54E-02 
UIP4 YPL186C 2.3765 2.04E-04 
USV1 YPL230W 1.8669 8.54E-03 
Unknown YPR145C-A 2.4630 9.36E-03 
SUE1 YPR151C 1.8986 1.99E-02 
GPH1 YPR160W 2.0379 2.43E-03 
GDB1 YPR184W 1.7245 1.92E-02 

Down 25 

PHO5 YBR093C -1.5785 4.25E-02 
PHO89 YBR296C -2.0116 4.17E-03 
RSA4 YCR072C -1.9151 5.88E-03 
BSC1 YDL037C -1.8019 1.50E-02 
PHM6 YDR281C -1.9496 1.99E-02 
SAM2 YDR502C -1.6106 3.36E-02 
RRT5 YFR032C -1.9724 1.80E-02 
MIG2 YGL209W -3.4627 5.89E-07 
YGR079W YGR079W -2.4300 1.22E-04 
AIR1 YIL079C -1.8138 1.43E-02 
UTP18 YJL069C -1.5670 4.31E-02 
CDC6 YJL194W -1.7031 2.75E-02 
YKL068W-A YKL068W-A -2.1585 1.22E-02 
YLR063W YLR063W -1.7181 3.04E-02 
IFH1 YLR223C -1.6753 2.45E-02 
YML018C YML018C -1.5951 4.04E-02 
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Up/Down Number of 
Genes 

Gene name Systematic 
Name 

log2fold 
Change 

Adjusted 
P-value 

YOX1 YML027W -1.7952 1.52E-02 
PHO84 YML123C -2.0633 2.43E-03 
AQR1 YNL065W -2.9480 3.08E-06 
TRF5 YNL299W -1.8417 9.90E-03 
SPS4 YOR313C -1.8420 2.42E-02 
SFG1 YOR315W -2.2822 5.15E-04 
VTS1 YOR359W -1.7630 1.62E-02 
SET6 YPL165C -4.3204 2.89E-02 
SAM3 YPL274W -1.6175 3.51E-02 

Table 12-2 Significantly differentially expressed genes in the tetraploid ancestral 
strain relative to the 2N ancestral strain 
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Figure 12-1 Comparative expression scatterplots for 1Ne and 2Ne clones 
Normalized log10 gene expression in the evolved clones (Y-axis) A) 131, B) 132, C) 232, 
and D) 233 compared to the diploid ancestor (X-axis). The gene expression values for 
each gene are the normalized read counts calculated by DESeq. Significantly 
differentially expressed genes (Adjusted P<0.05) are denoted by red circles. The 
density of genes is indicated by color from blue dots (low density) to red dots (high 
density). The dashed cyan lines indicate 2-fold differential expression.  

 

  

A B 

C D 
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Figure 12-2 Comparative expression scatter plots of the 4Ne clones Normalized 
log10 gene expression in the evolved clones (Y-axis) A) 334, B) 335, C) 336, and D) 337 
compared to the diploid ancestor (X-axis). The gene expression values for each gene 
are the normalized read counts calculated by DESeq. Significantly differentially 
expressed genes (Adjusted P<0.05) are denoted by red circles. The density of genes is 
indicated by color from blue dots (low density) to red dots (high density). The dashed 
cyan lines indicate 2-fold differential expression. 
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13 GENE ONTOLOGY ENRICHMENT ANALYSIS 

Strains GOID GO_term Cluster 
frequency 

Background 
frequency 

P-value Gene(s) annotated to the 
term 

6006v131 15749 monosacch
aride 
transport 

2 out of 11 
genes, 
18.2% 

24 out of 
5772 
background 
genes, 0.4% 

0.04276 HXT4/YHR092C:HXT2/YMR0
11W 

6006v131 8645 hexose 
transport 

2 out of 11 
genes, 
18.2% 

24 out of 
5772 
background 
genes, 0.4% 

0.04276 HXT4/YHR092C:HXT2/YMR0
11W 

6006v132 NA NA NA NA NA NA 

6006v232 15749 monosacch
aride 
transport 

3 out of 11 
genes, 
27.3% 

24 out of 
5772 
background 
genes, 0.4% 

0.00049 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C 

6006v232 8645 hexose 
transport 

3 out of 11 
genes, 
27.3% 

24 out of 
5772 
background 
genes, 0.4% 

0.00049 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C 

6006v232 8643 carbohydrat
e transport 

3 out of 11 
genes, 
27.3% 

33 out of 
5772 
background 
genes, 0.6% 

0.00131 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C 

6006v232 55085 transmembr
ane 
transport 

5 out of 11 
genes, 
45.5% 

232 out of 
5772 
background 
genes, 4.0% 

0.00183 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:SIT1/YE
L065W:SSA4/YER103W 

6006v232 71702 organic 
substance 
transport 

6 out of 11 
genes, 
54.5% 

645 out of 
5772 
background 
genes, 
11.2% 

0.02573 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:SSA4/Y
ER103W:BTN2/YGR142W:SF
C1/YJR095W 

6006v232 44765 single-
organism 
transport 

7 out of 11 
genes, 
63.6% 

1021 out of 
5772 
background 
genes, 
17.7% 

0.04338 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:SIT1/YE
L065W:SSA4/YER103W:BTN
2/YGR142W:SFC1/YJR095W 

6006v233 44699 single-
organism 
process 

2 out of 3 
genes, 
66.7% 

3437 out of 
5772 
background 
genes, 
59.5% 

0 MIG2/YGL209W:HXT4/YHR0
92C 

6006v334 15891 siderophore 
transport 

3 out of 23 
genes, 
13.0% 

8 out of 5772 
background 
genes, 0.1% 

0.00027 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 

6006v334 15688 iron chelate 
transport 

3 out of 23 
genes, 
13.0% 

9 out of 5772 
background 
genes, 0.2% 

0.0004 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 
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6006v334 19016
78 

iron 
coordination 
entity 
transport 

3 out of 23 
genes, 
13.0% 

13 out of 
5772 
background 
genes, 0.2% 

0.00134 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 

6006v334 6879 cellular iron 
ion 
homeostasi
s 

3 out of 23 
genes, 
13.0% 

35 out of 
5772 
background 
genes, 0.6% 

0.02897 SIT1/YEL065W:TIS11/YLR13
6C:FET3/YMR058W 

6006v334 55072 iron ion 
homeostasi
s 

3 out of 23 
genes, 
13.0% 

37 out of 
5772 
background 
genes, 0.6% 

0.03421 SIT1/YEL065W:TIS11/YLR13
6C:FET3/YMR058W 

6006v335 NA NA NA NA NA NA 

6006v336 15749 monosacch
aride 
transport 

5 out of 9 
genes, 
55.6% 

24 out of 
5772 
background 
genes, 0.4% 

2.78E-09 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:HXT4/Y
HR092C:GAL2/YLR081W 

6006v336 8645 hexose 
transport 

5 out of 9 
genes, 
55.6% 

24 out of 
5772 
background 
genes, 0.4% 

2.78E-09 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:HXT4/Y
HR092C:GAL2/YLR081W 

6006v336 8643 carbohydrat
e transport 

5 out of 9 
genes, 
55.6% 

33 out of 
5772 
background 
genes, 0.6% 

1.54E-08 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:HXT4/Y
HR092C:GAL2/YLR081W 

6006v336 71702 organic 
substance 
transport 

6 out of 9 
genes, 
66.7% 

645 out of 
5772 
background 
genes, 
11.2% 

0.00333 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:BTN2/Y
GR142W:HXT4/YHR092C:GA
L2/YLR081W 

6006v336 51179 localization 7 out of 9 
genes, 
77.8% 

1329 out of 
5772 
background 
genes, 
23.0% 

0.02185 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:BTN2/Y
GR142W:HXT4/YHR092C:HS
P104/YLL026W:GAL2/YLR08
1W 

6006v336 44765 single-
organism 
transport 

6 out of 9 
genes, 
66.7% 

1021 out of 
5772 
background 
genes, 
17.7% 

0.04366 HXT7/YDR342C:HXT6/YDR3
43C:HXT3/YDR345C:BTN2/Y
GR142W:HXT4/YHR092C:GA
L2/YLR081W 

6006v337 15891 siderophore 
transport 

3 out of 22 
genes, 
13.6% 

8 out of 5772 
background 
genes, 0.1% 

0.00032 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 

6006v337 15688 iron chelate 
transport 

3 out of 22 
genes, 
13.6% 

9 out of 5772 
background 
genes, 0.2% 

0.00047 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 

6006v337 19016
78 

iron 
coordination 
entity 
transport 

3 out of 22 
genes, 
13.6% 

13 out of 
5772 
background 
genes, 0.2% 

0.0016 SIT1/YEL065W:FIT2/YOR382
W:FIT3/YOR383C 

6006v337 15749 monosacch
aride 
transport 

3 out of 22 
genes, 
13.6% 

24 out of 
5772 
background 
genes, 0.4% 

0.01099 HXT6/YDR343C:GAL2/YLR08
1W:SKS1/YPL026C 
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6006v337 8645 hexose 
transport 

3 out of 22 
genes, 
13.6% 

24 out of 
5772 
background 
genes, 0.4% 

0.01099 HXT6/YDR343C:GAL2/YLR08
1W:SKS1/YPL026C 

6006v337 8643 carbohydrat
e transport 

3 out of 22 
genes, 
13.6% 

33 out of 
5772 
background 
genes, 0.6% 

0.02898 HXT6/YDR343C:GAL2/YLR08
1W:SKS1/YPL026C 

Table 13-1 GO terms enriched in genes up-regulated in the evolved clones 
relative to the 2N ancestor 

Strains GOID GO_term Cluster 
frequency 

Background 
frequency 

P-value Gene(s) annotated to the 
term 

6006v131 6820 anion 
transport 

7 out of 43 
genes, 
16.3% 

136 out of 
5772 
background 
genes, 2.4% 

0.01113 PHO89/YBR296C:ADY2/YCR
010C:GIT1/YCR098C:SFC1/Y
JR095W:JEN1/YKL217W:PH
O84/YML123C:OPT2/YPR194
C 

6006v131 6112 energy 
reserve 
metabolic 
process 

4 out of 43 
genes, 9.3% 

34 out of 
5772 
background 
genes, 0.6% 

0.02138 GLC3/YEL011W:RGI1/YER06
7W:RGI2/YIL057C:GAC1/YO
R178C 

6006v131 97080 plasma 
membrane 
selenite 
transport 

2 out of 43 
genes, 4.7% 

3 out of 5772 
background 
genes, 0.1% 

0.03286 JEN1/YKL217W:PHO84/YML
123C 

6006v132 6817 phosphate 
ion transport 

2 out of 5 
genes, 
40.0% 

10 out of 
5772 
background 
genes, 0.2% 

0.00054 PHO89/YBR296C:PHO84/YM
L123C 

6006v132 15698 inorganic 
anion 
transport 

2 out of 5 
genes, 
40.0% 

24 out of 
5772 
background 
genes, 0.4% 

0.00329 PHO89/YBR296C:PHO84/YM
L123C 

6006v132 98656 anion 
transmembr
ane 
transport 

2 out of 5 
genes, 
40.0% 

31 out of 
5772 
background 
genes, 0.5% 

0.00553 PHO89/YBR296C:PHO84/YM
L123C 

6006v132 34220 ion 
transmembr
ane 
transport 

2 out of 5 
genes, 
40.0% 

55 out of 
5772 
background 
genes, 1.0% 

0.01751 PHO89/YBR296C:PHO84/YM
L123C 

6006v232 NA NA NA NA NA NA 

6006v233 6817 phosphate 
ion transport 

2 out of 9 
genes, 
22.2% 

10 out of 
5772 
background 
genes, 0.2% 

0.00232 PHO89/YBR296C:PHO84/YM
L123C 

6006v233 15698 inorganic 
anion 
transport 

2 out of 9 
genes, 
22.2% 

24 out of 
5772 
background 
genes, 0.4% 

0.01407 PHO89/YBR296C:PHO84/YM
L123C 
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6006v233 98656 anion 
transmembr
ane 
transport 

2 out of 9 
genes, 
22.2% 

31 out of 
5772 
background 
genes, 0.5% 

0.02356 PHO89/YBR296C:PHO84/YM
L123C 

6006v334 6817 phosphate 
ion transport 

2 out of 13 
genes, 
15.4% 

10 out of 
5772 
background 
genes, 0.2% 

0.01377 PHO89/YBR296C:PHO84/YM
L123C 

6006v335 6817 phosphate 
ion transport 

2 out of 13 
genes, 
15.4% 

10 out of 
5772 
background 
genes, 0.2% 

0.00626 PHO89/YBR296C:PHO84/YM
L123C 

6006v335 15698 inorganic 
anion 
transport 

2 out of 13 
genes, 
15.4% 

24 out of 
5772 
background 
genes, 0.4% 

0.03771 PHO89/YBR296C:PHO84/YM
L123C 

6006v335 55085 transmembr
ane 
transport 

4 out of 13 
genes, 
30.8% 

232 out of 
5772 
background 
genes, 4.0% 

0.04095 PHO89/YBR296C:ATO3/YDR
384C:PHO84/YML123C:AQR
1/YNL065W 

6006v335 6811 ion transport 4 out of 13 
genes, 
30.8% 

235 out of 
5772 
background 
genes, 4.1% 

0.04296 PHO89/YBR296C:ATO3/YDR
384C:PHO84/YML123C:AQR
1/YNL065W 

6006v336 6817 phosphate 
ion transport 

2 out of 23 
genes, 8.7% 

10 out of 
5772 
background 
genes, 0.2% 

0.04693 PHO89/YBR296C:PHO84/YM
L123C 

6006v337 15696 ammonium 
transport 

3 out of 22 
genes, 
13.6% 

16 out of 
5772 
background 
genes, 0.3% 

0.00242 ADY2/YCR010C:TPO4/YOR2
73C:SAM3/YPL274W 

6006v337 6556 S-
adenosylme
thionine 
biosynthetic 
process 

2 out of 22 
genes, 9.1% 

3 out of 5772 
background 
genes, 0.1% 

0.00386 SAM2/YDR502C:SAM1/YLR1
80W 

6006v337 15848 spermidine 
transport 

2 out of 22 
genes, 9.1% 

4 out of 5772 
background 
genes, 0.1% 

0.0077 TPO4/YOR273C:SAM3/YPL2
74W 

6006v337 46500 S-
adenosylme
thionine 
metabolic 
process 

2 out of 22 
genes, 9.1% 

4 out of 5772 
background 
genes, 0.1% 

0.0077 SAM2/YDR502C:SAM1/YLR1
80W 

6006v337 6811 ion transport 6 out of 22 
genes, 
27.3% 

235 out of 
5772 
background 
genes, 4.1% 

0.01712 PHO89/YBR296C:ADY2/YCR
010C:GIT1/YCR098C:PHO84/
YML123C:TPO4/YOR273C:S
AM3/YPL274W 

6006v337 15695 organic 
cation 
transport 

2 out of 22 
genes, 9.1% 

7 out of 5772 
background 
genes, 0.1% 

0.02678 TPO4/YOR273C:SAM3/YPL2
74W 
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6006v337 72337 modified 
amino acid 
transport 

2 out of 22 
genes, 9.1% 

8 out of 5772 
background 
genes, 0.1% 

0.03562 MMP1/YLL061W:SAM3/YPL2
74W 

Table 13-2 GO terms enriched in the genes down-regulated in the evolved clones 
relative to the 2N ancestor 

Strains GOID GO_term Cluster 
frequency 

Background 
frequency 

P-value Gene(s) annotated to the 
term 

6006v6040 6112 energy 
reserve 
metabolic 
process 

10 out of 
105 genes, 
9.5% 

34 out of 
5772 
background 
genes, 0.6% 

8.37E-08 GLC3/YEL011W:GIP2/YER05
4C:RGI1/YER067W:GSY1/YF
R015C:RGI2/YIL057C:GLG1/
YKR058W:GSY2/YLR258W:P
GM2/YMR105C:GPH1/YPR16
0W:GDB1/YPR184W 

6006v6040 5977 glycogen 
metabolic 
process 

8 out of 105 
genes, 7.6% 

32 out of 
5772 
background 
genes, 0.6% 

2.39E-05 GLC3/YEL011W:GIP2/YER05
4C:GSY1/YFR015C:GLG1/YK
R058W:GSY2/YLR258W:PG
M2/YMR105C:GPH1/YPR160
W:GDB1/YPR184W 

6006v6040 15980 energy 
derivation 
by oxidation 
of organic 
compounds 

13 out of 
105 genes, 
12.4% 

126 out of 
5772 
background 
genes, 2.2% 

0.00012 GLC3/YEL011W:CYC7/YEL03
9C:GIP2/YER054C:RGI1/YER
067W:GSY1/YFR015C:RGI2/
YIL057C:COX5B/YIL111W:GL
G1/YKR058W:GSY2/YLR258
W:ISF1/YMR081C:PGM2/YM
R105C:GPH1/YPR160W:GDB
1/YPR184W 

6006v6040 6091 generation 
of precursor 
metabolites 
and energy 

13 out of 
105 genes, 
12.4% 

149 out of 
5772 
background 
genes, 2.6% 

0.00086 GLC3/YEL011W:CYC7/YEL03
9C:GIP2/YER054C:RGI1/YER
067W:GSY1/YFR015C:RGI2/
YIL057C:COX5B/YIL111W:GL
G1/YKR058W:GSY2/YLR258
W:ISF1/YMR081C:PGM2/YM
R105C:GPH1/YPR160W:GDB
1/YPR184W 

6006v6040 44042 glucan 
metabolic 
process 

8 out of 105 
genes, 7.6% 

51 out of 
5772 
background 
genes, 0.9% 

0.00109 GLC3/YEL011W:GIP2/YER05
4C:GSY1/YFR015C:GLG1/YK
R058W:GSY2/YLR258W:PG
M2/YMR105C:GPH1/YPR160
W:GDB1/YPR184W 

6006v6040 6073 cellular 
glucan 
metabolic 
process 

8 out of 105 
genes, 7.6% 

51 out of 
5772 
background 
genes, 0.9% 

0.00109 GLC3/YEL011W:GIP2/YER05
4C:GSY1/YFR015C:GLG1/YK
R058W:GSY2/YLR258W:PG
M2/YMR105C:GPH1/YPR160
W:GDB1/YPR184W 

6006v6040 55114 oxidation-
reduction 
process 

13 out of 
105 genes, 
12.4% 

153 out of 
5772 
background 
genes, 2.7% 

0.00116 GLC3/YEL011W:CYC7/YEL03
9C:GIP2/YER054C:RGI1/YER
067W:GSY1/YFR015C:RGI2/
YIL057C:COX5B/YIL111W:GL
G1/YKR058W:GSY2/YLR258
W:ISF1/YMR081C:PGM2/YM
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R105C:GPH1/YPR160W:GDB
1/YPR184W 

6006v6040 5978 glycogen 
biosynthetic 
process 

5 out of 105 
genes, 4.8% 

18 out of 
5772 
background 
genes, 0.3% 

0.00459 GLC3/YEL011W:GSY1/YFR0
15C:GLG1/YKR058W:GSY2/Y
LR258W:PGM2/YMR105C 

6006v6040 6979 response to 
oxidative 
stress 

10 out of 
105 genes, 
9.5% 

102 out of 
5772 
background 
genes, 1.8% 

0.00487 HSP30/YCR021C:HSP12/YFL
014W:NQM1/YGR043C:CTT1
/YGR088W:XBP1/YIL101C:G
PX1/YKL026C:HSP104/YLL02
6W:GAD1/YMR250W:NCE10
3/YNL036W:DDR2/YOL052C-
A 

6006v6040 44264 cellular 
polysacchari
de 
metabolic 
process 

8 out of 105 
genes, 7.6% 

63 out of 
5772 
background 
genes, 1.1% 

0.00554 GLC3/YEL011W:GIP2/YER05
4C:GSY1/YFR015C:GLG1/YK
R058W:GSY2/YLR258W:PG
M2/YMR105C:GPH1/YPR160
W:GDB1/YPR184W 

6006v6040 5976 polysacchari
de 
metabolic 
process 

8 out of 105 
genes, 7.6% 

69 out of 
5772 
background 
genes, 1.2% 

0.01093 GLC3/YEL011W:GIP2/YER05
4C:GSY1/YFR015C:GLG1/YK
R058W:GSY2/YLR258W:PG
M2/YMR105C:GPH1/YPR160
W:GDB1/YPR184W 

6006v6040 5991 trehalose 
metabolic 
process 

4 out of 105 
genes, 3.8% 

11 out of 
5772 
background 
genes, 0.2% 

0.01104 TPS2/YDR074W:HSP104/YLL
026W:TSL1/YML100W:PGM2/
YMR105C 

6006v6040 44262 cellular 
carbohydrat
e metabolic 
process 

11 out of 
105 genes, 
10.5% 

138 out of 
5772 
background 
genes, 2.4% 

0.01277 TPS2/YDR074W:GLC3/YEL0
11W:GIP2/YER054C:GSY1/Y
FR015C:GLG1/YKR058W:HS
P104/YLL026W:GSY2/YLR25
8W:TSL1/YML100W:PGM2/Y
MR105C:GPH1/YPR160W:G
DB1/YPR184W 

6006v6040 34637 cellular 
carbohydrat
e 
biosynthetic 
process 

7 out of 105 
genes, 6.7% 

55 out of 
5772 
background 
genes, 1.0% 

0.01907 TPS2/YDR074W:GLC3/YEL0
11W:GSY1/YFR015C:GLG1/Y
KR058W:GSY2/YLR258W:TS
L1/YML100W:PGM2/YMR105
C 

6006v6040 34599 cellular 
response to 
oxidative 
stress 

9 out of 105 
genes, 8.6% 

96 out of 
5772 
background 
genes, 1.7% 

0.0192 HSP30/YCR021C:HSP12/YFL
014W:NQM1/YGR043C:XBP1
/YIL101C:GPX1/YKL026C:HS
P104/YLL026W:GAD1/YMR25
0W:NCE103/YNL036W:DDR2
/YOL052C-A 

Table 13-3 GO terms enriched in the genes up-regulated in the 4N ancestor 
relative to the 2N ancestor 
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Strains GOID GO_term Cluster 
frequency 

Background 
frequency 

P-value Gene(s) annotated to the 
term 

6006v6040 15847 putrescine 
transport 

2 out of 31 
genes, 6.5% 

4 out of 5772 
background 
genes, 0.1% 

0.03211 TPO1/YLL028W:SAM3/ 
YPL274W 

6006v6040 15848 spermidine 
transport 

2 out of 31 
genes, 6.5% 

4 out of 5772 
background 
genes, 0.1% 

0.03211 TPO1/YLL028W:SAM3/ 
YPL274W 

Table 13-4 GO terms enriched in the genes down-regulated in the 4N ancestor 
relative to the 2N ancestor 
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14 PRIMERS USED IN THESE STUDIES 

Primer Name Sequence Assay 
PR001F_HXT1 GTTTGTGTTTCGCCTGGGCCTT  qPCR 
PR001R_HXT1 TGGATGGTCAGGTGGGCATTTG  qPCR 
PR002F_HXT2 CGCTACTAGCCGCGTTGAAAGT  qPCR 
PR002R_HXT2 ATGCGGCGATTGGCTTTGCT  qPCR 
PR003F_HXT3 TTTCCAAGCTGAGGCCGACCAA  qPCR 
PR003R_HXT3 ACGAAACCACCGAAGGCAACCA  qPCR 
PR004F_HXT4 TAAGGTCAGCGCAGACGATCCA  qPCR 
PR004R_HXT4 TTCACCCCAGGAGGCATTACCA  qPCR 
PR005F_HXT5 TGGTACCGCCGGTTACAACGAT  qPCR 
PR005R_HXT5 TCGTCTTTGGGAGGGCCTTCAT  qPCR 
PR006F_HXT67 ATGGGGTGCTGCATCCATGACT  qPCR 
PR006R_HXT67 GCACCCTTGGAAGATGGTTGGT  qPCR 
PR007F_MIG2 ACACTCCACGCTCTGTGCCAAA  qPCR 
PR007R_MIG2 AGGGCTGGCAGTTTGATGCTGA  qPCR 
PR008F_SUC2 TTCACACCCAACAAGGGCTGGA  qPCR 
PR008R_SUC2 TGGCCCCAAAACAATGGCGT  qPCR 
PHO89_F AAGCCATGGTTTTGGCGGGT qPCR 
PHO89_R AAAACAGCGGGGTCGTTGGT qPCR 
PR010F_SNF3 AGGGCATAGCACTGCGACGAAA  qPCR 
PR010R_SNF3 TTTTGCCGCTGCAAGCTCGT  qPCR 
PR016F_MTH1 TGAGATCAAGCGCCGCAACA  qPCR 
PR016R_MTH1 ATCCGGCTGCCAATCCAATCCT  qPCR 
PR013F_ACT1 ACGTCGCCTTGGACTTCGAACA qPCR 
PR013R_ACT1 TGGAACAAAGCTTCTGGGGCTC qPCR 
ZPS1_F CCGTCATGGGTGTCTTTGAGCA qPCR 
ZPS1_R AGCTGGAGCAGATTGACGGTGA qPCR 
NCE102_F TGTTGGCCGTTGGTATCAGAGC qPCR 
NCE102_R TGCAACAGCGGCTTGAGCTTGT qPCR 
YIL169C_F AGCTGCTTTAGCTTTGGCCCTT qPCR 
YIL169C_R ACCACAGAGGTGGATGAGCTGT qPCR 
SPS4_F TGGTAGTGTCACGTCCCGTTCA qPCR 
SPS4_R AAGGGACAACGCGCTCTACTGT qPCR 
SPI1_F TAACGATACAGCCACGCCAGCA qPCR 
SPI1_R CGAAAGTCGTTGGTTCTGGGCA qPCR 
PR009F_PHO84 ATGGAGAGGTGCCATCATGGGT qPCR 
PR009R_PHO84 TCGCCCTTGTAAGCAGCAACCA qPCR 
SPL1_F TGTCTCCACGCGGCAAAATGGA qPCR 
SPL1_R AGGATTGAGCCTCCTGCACTCT qPCR 
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Primer Name Sequence Assay 
AS001_F_Flo8 GACACGGTGAGTTGACGTTAG Gene Amp 
AS001_R_Flo8 CGTAACTCCATTCTCCTAGCTTTT Gene Amp 
AS046: RPS12-Chip F1 TTGCTTGCGGGTAAGGTATT Rap1 Chip-qPCR 
AS046: RPS12-Chip R1 TATTTCGGGGTTTGTTTCGG Rap1 Chip-qPCR 
AS047: RPL30-Chip F1 TCATTACTTTGTAGGCGGGA Rap1 Chip-qPCR 
AS047: RPL30-Chip R1 TTTAAATGCGGCCCTAGCTG Rap1 Chip-qPCR 
AS048: RNR2-Chip F1 TAGCACCGTACCATACCCTT Rap1 Chip-qPCR 
AS048: RNR2-Chip R1 CGAAAAAGGGGAAAGTGATGA Rap1 Chip-qPCR 
AS049: FAS1-Chip F1 AAACGACGGCCAAAAACTTC Rap1 Chip-qPCR 
AS049: FAS1-Chip R1 TACTGTCAGACCAAAAGCGT Rap1 Chip-qPCR 
AS050: PHO5-Chip F1 TCTCTTCGAAAACAGGGACC Pho4 Chip-qPCR 
AS050: PHO5-Chip R1 TTTCGCATAGAACGCAACTG Pho4 Chip-qPCR 
AS051: PHO8-Chip F1 TGGCCTTTTTGATCGCATTT Pho4 Chip-qPCR 
AS051: PHO8-Chip R1 AGTCATGTCGTACAACGGAA Pho4 Chip-qPCR 
AS052: VTC4-Chip F1 GTCAGTAGCTCTCCGTCAAA Pho4 Chip-qPCR 
AS052: VTC4-Chip R1 GAAGCGTTGCTAATATTCCGA Pho4 Chip-qPCR 
AS053: PHO84-Chip F1 GTGCTGGAAATAACACGTCC Pho4 Chip-qPCR 
AS053: PHO84-Chip 
R1 

GCACGTTGGTGCTGTTATAG Pho4 Chip-qPCR 

AS055-MTH1seq-F1 CGAAACCACAAGCAGCAATA Sanger 
AS055-MTH1seq-R1 ACCATCGGGAAGGTTTCTTT Sanger 
AS055-MTH1seq-F2 AGTGAGCCTGGATGAAGCAT Sanger 
AS056-SNF3seq-F1 ATGCCTTTGTTGGCATAGAA Sanger 
AS056-SNF3seq-R1 ATAATGCACGTCCGCTTAAT Sanger 
AS056-SNF3seq-F2 GGTGCTGGAGGAATCACATT Sanger 
AS056-SNF3seq-F3 ATTGCCCTTCAAGCATTTCA Sanger 
AS056-SNF3seq-F4 TGACCGTTTATGAAACGAAGG Sanger 
AS056-SNF3seq-F5 CAAGCGAAGATTACACAGAAGATG Sanger 
AS101_MIG1_F GAAGGTTGTGGGCTCTCCAA qPCR 
AS101_MIG1_R TTGGAGAGCCCACAACCTTC qPCR 
AS102_HXK1_F CTTCTCGTACCCAGCTTCCC qPCR 
AS102_HXK1_R ACATCGTGGCCTTCGACATT qPCR 
AS103_GAL4_F AAGAAAAACCGAAGTGCGCC qPCR 
AS103_GAL4_R AGTCAGCGGAGACCTTTTGG qPCR 
AS104_GAL1_F GGATCAGGCTGCCTCTGTTT qPCR 
AS104_GAL1_R ACGGAGTAGCCTTCAACTGC qPCR 
AS105_STD1_F GTCGAGGCCCAATGCAGATA qPCR 
AS105_STD1_R ATGCGGTATGAGGCTTGGAG qPCR 
AS106_PFK27_F TGTTATTAATGCGGGCGTCG qPCR 
AS106_PFK27_R CCCTAATTTGCTTGCCGCAG qPCR 
AS107_IPT1_F CACGATTGGCCCTAACGACT qPCR 
AS107_IPT1_R AGATGAAGGGGAGGAGGACC qPCR 
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Primer Name Sequence Assay 
AS108_SIP4_F TGTCGAGGAGAGGTCTTCCA qPCR 
AS108_SIP4_R AGAATTTGCATTGGCGCTGG qPCR 
AS109_DUR3_F TTTGGCCCATGCCCATGTAT qPCR 
AS109_DUR3_R TACAAACGGCAAACGCACTG qPCR 
AS110_SNF3delta_F CTATCCTCGGCAAATTGCAT Gene amp 
AS110_SNF3delta_R ATAATGCACGTCCGCTTAAT Gene amp 
AS111_IPT1delta_F TCCGGCCACAACATTTTTAT Gene amp 
AS111_IPT1delta_R GTGGGATGTTCGTCGTTCTT Gene amp 
AS112_MOT3delta_F GGCCTTGTAGCAATCAAAAA Gene amp 
AS112_MOT3delta_R AGATGACGATTTCCCTCACG Gene amp 
AS113_IPT1_C219W_F GGACCCCCGCTATATTTTGT Allele flanking 

AS113_IPT1_C219W_
R 

CATCCTGCACTTGACAGCTC Allele flanking 

AS113_IPT1_C219W_
G_F 

TTTGTAATCCTAGGGCAAAACTAAAG Allele specific  

AS113_IPT1_C219W_
C_F 

TTTGTAATCCTAGGGCAAAACTAAAC Allele specific 

AS115_DUR3delta_F CGGTGTTGCATGAAGATACG Gene amp 
AS115_DUR3delta_R TTTTTCCCCTTGACTTTCTTTTC Gene amp 
AS121_CYC7_qPCR_F CGGGATTCAAACCAGGCTCT qPCR 
AS121_CYC7_qPCR_R
2 

CTTCTTCAACCCGGCAAACG qPCR 

AS122_CYC1_qPCR_F CAAGGCCGGTTCTGCTAAGA qPCR 
AS122_CYC1_qPCR_R TGGACCAACCTTATGTGGGC qPCR 
AS123_PGM2_qPCR_
F 

GCCAGCATGGTCTTCTGTCT qPCR 

AS123_PGM2_qPCR_
R 

CCTGGATTATGTGAGGCGGT qPCR 

As124_PGM1_qPCR_F TTGAGGTTATCCGGCACAGG qPCR 
AS124_PGM1_qPCR_
R 

GAAGACGTCAGCTGTTTGGC qPCR 

AS125_GLG1_qPCR_F CCGGACGTGTACGAGTCAAA qPCR 
AS125_GLG1_qPCR_R TCTGCAACTGCACTCGTCTT qPCR 
AS126_GLG2_QPCR_
F 

CTGGTGCAGTTCGATCAGGT qPCR 

AS126_GLG2_qPCR_R
2 

GTTGTAGGTGAAGGGGAGGC qPCR 

AS127_TPK1_qPCR_F ACCACCCCTGGTTCAAAGAA qPCR 
AS127_TPK1_qPCR_R GGTGTCACCTTGTCCCTGTT qPCR 
AS128_TPK3_qPCR_F GCCGGAAGTGGTCAGTACAA qPCR 
AS128_TPK3_qPCR_R GGAGTGTATCCGGCAAGCAT qPCR 
AS129_CTT1_qPCR_F AGACCAGACGGCCCTATCTT qPCR 
AS129_CTT1_qPCR_R TTTGGCATGGACTACACGCT qPCR 
AS130_CTA1_qCPR_F CAAACAATGACCGAACGCGA qPCR 
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Primer Name Sequence Assay 
AS130_CTA1_qPCR_R AATTGCCCCTGAGGCCATAC qPCR 
AS135 RGT1 qPCR F AAGGGGGTCTGCTCAAACTG qPCR 
AS135 RGT1 qPCR R TGGTGCTCCTCGTATAGCCT qPCR 
AS137_ACT1_qPCR_F ACGTCGCCTTGGACTTCGAACA qPCR 

AS137_ACT1_qPCR_R TGGAACAAAGCTTCTGGGGCTC qPCR 

Table 14-1 Yeast Primer List 
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Primer Name Sequence 
AS117_MTH1_C32
1F_gblock 

CGCTAGAAAAAGACATGAGCATATAACTGGTAGAAATGAAGCCGTCATGAA
TTTGTCGAAACCGGAATGGAGAAATATCATCGAAAATTACCTCTTAAATATA
GCAGTAGAGGCACAATTCAGGTTTGATTTCAAACAAAGATGCTCCGAATAT
AAGAAATGGAAGTTACAACAGTCCAACTTAAAAAGACCGGACATGCCCCC
ACCAAGCATAATACCGCGGAAAAACAGCACAGAAAC 

AS116_MTH1_C32
1F_pcore_F 

AACCGGAATGGAGAAATATCATCGAAAATTACCTCTTAAATATAGCAGTAG
AGGCACAATGAGCTCGTTTTCGACACTGG 

AS116_MTH1_C32
1F_pcore_R 

TTGGACTGTTGTAACTTCCATTTCTTATATTCGGAGCATCTTTGTTTGAAAT
CAAACCTGTCCTTACCATTAAGTTGATC 

AS119_MTH1_gBL
OCKamp_F 

CGCTAGAAAAAGACATGAGCA 

AS119_MTH1_gBL
OCKamp_R  

TTTTCCGCGGTATTATGCTT 

AS131_MTH1-
pRS_F 

TGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATC
CGAGTCCATTTCTCCAGTGA 

AS131_MTH1-
pRS_R 

TCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCA
GTGGTTTGATCTTCGCTACCC 

AS131_MTH1-
pRS_F2 

TGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATC
CCCACCAAACCCAGTTTTCT 

AS141_MTH1_C32
1F_gap_R1 

AGCATCTTTGTTTGAAATCAAACCTGAATTGTGCCTC 

AS142_MTH1_C32
1F_gap_F1 

TAAATATAGCAGTAGAGGCACAATTCAGGTTTGA 

Table 14-2 MTH1-C321F strain construction primers 
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Primer Name Sequence 
AS118_RGT1_S509
Stop_gblock 

GCCACAGAGAAGTACAAAAAAACGCAGAAAAAGTTACGTATCTAAGAAGAC
AAAACCAAAGAGAGATTCATCTATATCTATAACATCGAAAGATTCTGCTCAC
CCAATGACCACTTCATGAACTATCGCGTATGGACAGATATCCGATGTAGAT
CTAATAGACACCTACTATGAGTTCATACATGTAGGATTTCCGATCATACCTT
TAAACAAAACGACCTTGACCAGTGACTTATTGTT 

AS117_RGT1_S509
Stop_pcore_F 

AGAGAGATTCATCTATATCTATAACATCGAAAGATTCTGCTCACCCAATGAC
CACTTCATGAGCTCGTTTTCGACACTGG 

AS117_RGT1_S509
Stop_pcore_R 

ATGAACTCATAGTAGGTGTCTATTAGATCTACATCGGATATCTGTCCATAC
GCGATAGTTTCCTTACCATTAAGTTGATC 

AS120_RGT1_gBlo
ckamp_F 

CGCAGAAAAAGTTACGTATCTAAGAA 

AS120_RGT1_gBlo
ckamp_R 

CACTGGTCAAGGTCGTTTTG 

AS132_RGT1-
pRS_F 

TGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATC
GCTGCTTTGTGCATTTTCCT 

AS132_RGT1-
pRS_R 

TCCACCGCGGTGGCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCA
GGCTTGGCGACTCTCGAATAC 

AS132_RGT1-
pRS_F2  

TGGGTACCGGGCCCCCCCTCGAGGTCGACGGTATCGATAAGCTTGATATC
TTCTCTGGCTTTTTCGGT 

AS143_RGT1-
S509Stop_Gap_R1 

ATATCTGTCCATACGCGATAGTTCATGAAGTGGTC 

AS144_RGT1-
S509Stop_Gap_F1 

TCACCCAATGACCACTTCATGAACTATCGCG 

Table 14-3 RGT1-S509stop strain construction primers 
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Primer Name Sequence 
399_IPT1_GBLOCK  ATGGCGGAGTGTAGTGAAGGAACAGCACCAAACACAATAGGAGACATGT

GAAATCCTTTAGTGTTCAAATGAGTACCCAAATGGCTATCTACTCTTATCA
AACCGGCAGCAAACCCTTCCTGGGTGTAATTAACATGTTCGGTGTCATCA
ATACCGTACAGATGAGTAAACCATGGGGAGGCCATTGGAACAAGCAGAT
GGGTAAGGACCCCCGCTATATTTTGTAATCCTAGGGCAAAACTAAACCAT
TTTAAAGTCCCCGGTGGTTGGAAGACGTATAAGTATACAGCTGTTAAAAT
TGGAGCTGTCAAGTGCAGGATGACATAGGAGAACCAAGCCAGTAAATCC
TTGGTCTTAGTAAAGTTTGCATCCGACTGGTAAGCAAAGAAATGATCAAT
GTTGAGTATAACAAATGTAAACAGGGGCAAGGCAAACGGTATGAAAATTG
TCCGAAATCTCTTTTGGATCGGCCGCTGCTTGCGCTTGCAGGGGTAATG
AAAA 

397_IPT1_PCORE_F  GATGGGTAAGGACCCCCGCTATATTTTGTAATCCTAGGGCAAAACTAAAG
GAGCTCGTTTTCGACACTGG  

398_IPT1_Pcore_R  TTAACAGCTGTATACTTATACGTCTTCCAACCACCGGGGACTTTAAAATGT
CCTTACCATTAAGTTGATC 

400_IPT1_GBLOCK
AMP_F 

ATGGCGGAGTGTAGTGAAGG 

401_IPT1_GBLOCK
AMP_R 

TTTTCATTACCCCTGCAAGC 

AS138_IPT1_GBLO
CKAMP_F2 

AGGCCATTGGAACAAGCAGA 

AS138_IPT1_GBLO
CKAMP_R2 

GTCATCCTGCACTTGACAGC 

Table 14-4 IPT1-C219W strains construction primers 
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Primer Name Sequence 
419_MOT3_GBLOCK  GCATCTACCTCCTGGTTGGAAAATAAACACTATGCCGCAACCACGTC

CTACGACAGCACCTAACCATCCCCCTGCGCCGGTGCCTTCTTCGAA
CCCTGTGGCCTCGAACTTGGTTCCTGCCCCATCATCAGACCATAAAT
ATATCCATCAATGCCAATTTTGTGAGAAGTCTTTCAAAAGAAAATCAT
GGTTGAAAAGGCACCTATTGTCACACTCGCAACAAAGACATTTTCTA
TGCCCTTGGTGCTTAAGCAGGCAGAAGAGAAAAGATAATCTTTTACA
GCATATGTAACTCAAGCATACAAATTATTTATTAGACGAACTCAAGAA
AAACAACATCATCTTTAACTACAACAATTCTTCCTCCTCTAATAATAAC
AACGACAATAATAATAATAATAACAGCAATAGCGCTAGCGGCAGTGG
CGGTGCCGGTGCCGCGGCGGCAGCAGCAACAGCTCCCGAAAATGA
AGATGGAAACGGTTACG 

417_MOT3_Pcore_F  TTGGTGCTTAAGCAGGCAGAAGAGAAAAGATAATCTTTTACAGCATA
TGAGAGCTCGTTTTCGACACTGG  

418_MOT3_Pcore_R  GATGTTGTTTTTCTTGAGTTCGTCTAATAAATAATTTGTATGCTTGAGT
TTCCTTACCATTAAGTTGATC 

420_MOT3_GBLOCKAM
P_F 

GCATCTACCTCCTGGTTGGA 

421_MOT3_GBLOCKAM
P_R 

CGTAACCGTTTCCATCTTCA 

AS139_MOT3_GBLOCK
AMP_F2 

TTTCTATGCCCTTGGTGCTT 

AS139_MOT3_GBLOCK
AMP_R2 

CCGCCACTGCCGCTA 

Table 14-5 MOT3-K394stop strain construction primers 

  



 213 

Primer Name Sequence Assay 
AS-FOXA2-F1 TACGTGTTCATGCCGTTCAT qPCR 
AS-FOXA2-R1 CGACTGGAGCAGCTACTATGC qPCR 
AS-FOXA2-F2 TGTTGCTCACGGAGGAGTAG qPCR 
AS-FOXA2-R2 TTAAAGTATGCTGGGAGCGG qPCR 
AS-REST-F1 GAGGCCACATAACTGCACTG qPCR 
AS-REST-R1 TGTCCTTACTCAAGTTCTCAGAAGA qPCR 
AS-REST-F2 CCACATAACTGCACTGATCACA qPCR 
AS-REST-R2 CATACAGGAGAACGCCCATA qPCR 
AS-GABPA-F1 TCAGCTCCTCTGCTTCTCTTTT qPCR 
AS-GABPA-R1 CTCAGCCGGCTCTGGAGT qPCR 
AS-GABPA-F2 TGGCTGGAGTATTTCAAAGGA qPCR 
AS-GABPA-R2 TCTTACCCGGAGAGACGCT qPCR 
AS-BACH1-F1 TGTTGTCGGGAAGTTCAGTG qPCR 
AS-BACH1-R1 GCTCTCGCTTCAGTCAGTCG qPCR 
AS-BACH1-F2 TCGGGAAGTTCAGTGGAAAG qPCR 
AS-BACH1-R2 TCCCTTTGTTGGAGTTTTGC qPCR 
AS-GAPDH-F1 TGTGGGCATCAATGGATTTGG qPCR 
AS-GAPDH-R1 ACACCATGTATTCCGGGTCAAT qPCR 
AS-RPL13A-F1 GCCCTACGACAAGAAAAAGCG qPCR 
AS-RPL13A-R1 TACTTCCAGCCAACCTCGTGA qPCR 
AS-ACTBL2-F1 GTCTGCCTTGGTAGTGGATAATG qPCR 
AS_ACTBL2-R1 TCGAGGACGCCCTATCATGG qPCR 
MA1033 GCCGCTAGAGGTGAAATTCTTG qPCR 
MA1034 CTTTCGCTCTGGTCCGTCTT qPCR 
TUBB F1 CTGGACCGCATCTCTGTGTA qPCR 

TUBB R1 TGCCCCAGACTGACCAAATAC qPCR 

ETS2 F1 CTCATGACTCCGCCAACTGT qPCR 
ETS2 R1 AGCCAGGGGTTCTTTGGAAT qPCR 
RUNX1 F1 CATCGCTTTCAAGGTGGTGG qPCR 

RUNX1 R1 ATGGCTGCGGTAGCATTTCT qPCR 

AIRE F1 CCCAGGCTCTCAACTGAAGG qPCR 
AIRE R1 GTCTGAATCCCGTTCCCGAG qPCR 
ERG F1 ATCGTGCCAGCAGATCCTAC qPCR 
ERG R1 AGAGAAGGATGTCGGCGTTG qPCR 
REST-v1 F1 GCACCCAACTTTACCACCCT  qPCR 
REST-v1 R1 GGCCATAACTGTATTCGGCCT qPCR 
REST-v2 F1 CCGGCTGCGCGAATACAG qPCR 
REST-v2 R1 CAGGGCCATTCCAATGTTGC qPCR 
REST-v1/2 F1 GAGCTGGGGATAATGAGCGAG qPCR 

REST-v1/2 R1 GGGCGTTCTCCTGTATGAGTTC qPCR 
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Primer Name Sequence Assay 
UPS16 F TACTGAGGCTCTTTCCGCAG CHIP qPCR 
USP16 R TTGCAGCAGCTTAGACTCCA CHIP qPCR 
CD19 F GCTGTTCCGGTGGAATGTTT CHIP qPCR 
CD19 R CTTTGGCCCACACATACAGC CHIP qPCR 
NFKB1-1 F AGAGGCACATGGGATTAGCG CHIP qPCR 
NFKB1-1 R GTGAAGAGAAATGACCGCCG CHIP qPCR 
NFKB1-2 F GATAAACCAGCAAGTCAGGGC CHIP qPCR 
NFKB1-2 R TTATGCATGACCGCTGAAACA CHIP qPCR 
DYRK1A F TGGTTACTTGCCTGTGCCTT CHIP qPCR 
DYRK1A R TGGGCGGAATTCAAGAACCA CHIP qPCR 

Table 14-6 Human primer list 
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15 STRAINS USED IN THESE STUDIES 

Strain Identifier Well Ploidy Generation WGS aCGH RNA Seq 

PY5999 NA 1N 0 HiSeq2500 X  
PY6006 NA 2N 0 SOLiD X X 
PY6040 NA 4N 0 SOLiD X X 
1N_101 1N_A1 1N 250 HiSeq2500   
1N_102 1N_A6 1N 250 HiSeq2500   
1N_103 1N_A12 1N 250 HiSeq2500   
1N_104 1N_B2 1N 250 HiSeq2500 X  
1N_105 1N_C1 1N 250 HiSeq2500   
1N_106 1N_C5 1N 250 HiSeq2500   
1N_107 1N_C6 1N 250  X  
1N_108 1N_C9 1N 250 HiSeq2500   
1N_109 1N_C10 1N 250 HiSeq2500   
1N_110 1N_C12 1N 250 HiSeq2500 X  
1N_111 1N_D8 1N 250 HiSeq2500   
1N_112 1N_E1 1N 250 HiSeq2500   
1N_113 1N_E2 1N 250 HiSeq2500 X  
1N_114 1N_E3 1N 250 HiSeq2500 X  
1N_115 1N_E4 1N 250    
1N_116 1N_E11 1N 250 HiSeq2500   
1N_117 1N_F1 1N 250 HiSeq2500   
1N_118 1N_F5 1N 250 HiSeq2500   
1N_119 1N_F7 1N 250    
1N_120 1N_F8 1N 250 HiSeq2500   
1N_121 1N_F9 1N 250 HiSeq2500   
1N_122 1N_F11 1N 250 HiSeq2500   
1N_123 1N_G1 1N 250  X  
1N_124 1N_G2 1N 250 HiSeq2500   
1N_125 1N_G7 1N 250    
1N_126 1N_G12 1N 250    
1N_127 1N_H1 1N 250 HiSeq2500   
1N_128 1N_H6 1N 250 HiSeq2500   
1N_129 1N_H9 1N 250    
1N_131 1N_E8 1N 250 MiSeq X X 
1N_132 1N_C11 1N 250 MiSeq X X 
2N_201 2N_A10 2N 250  X  
2N_202 2N_B7 2N 250 HiSeq2500   
2N_203 2N_B11 2N 250 HiSeq2500   
2N_204 2N_B12 2N 250 HiSeq2500   
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Strain Identifier Well Ploidy Generation WGS aCGH RNA Seq 

2N_205 2N_C1 2N 250 HiSeq2500   
2N_206 2N_C2 2N 250 HiSeq2500   
2N_207 2N_C4 2N 250 HiSeq2500   
2N_208 2N_C8 2N 250 HiSeq2500   
2N_209 2N_D1 2N 250 HiSeq2500   
2N_210 2N_D4 2N 250 HiSeq2500   
2N_211 2N_D6 2N 250 HiSeq2500   
2N_212 2N_D7 2N 250 HiSeq2500 X  
2N_213 2N_E1 2N 250 HiSeq2500   
2N_214 2N_E2 2N 250 HiSeq2500   
2N_215 2N_E3 2N 250    
2N_216 2N_E4 2N 250    
2N_217 2N_E10 2N 250  X  
2N_218 2N_E12 2N 250 HiSeq2500 X  
2N_219 2N_F3 2N 250 HiSeq2500   
2N_220 2N_F4 2N 250    
2N_221 2N_F6 2N 250 HiSeq2500   
2N_222 2N_F9 2N 250 HiSeq2500   
2N_223 2N_F10 2N 250 HiSeq2500   
2N_224 2N_G4 2N 250 HiSeq2500   
2N_225 2N_G10 2N 250 HiSeq2500   
2N_226 2N_G11 2N 250 HiSeq2500   
2N_227 2N_H1 2N 250 HiSeq2500   
2N_228 2N_H2 2N 250  X  
2N_229 2N_H5 2N 250    
2N_230 2N_H7 2N 250  X  
2N_231 2N_H9 2N 250    
2N_232 2N_B2 2N 250 Solid X X 
2N_233 2N_F12 2N 250 Solid X X 
4N_301 4N_A1 4N 250  X  
4N_302 4N_A3 4N 250  X  
4N_303 4N_A7 4N 250    
4N_304 4N_B3 4N 250 HiSeq2500 X  
4N_305 4N_B4 4N 250 HiSeq2500 X  
4N_306 4N_B5 4N 250 HiSeq2500   
4N_307 4N_B6 4N 250 HiSeq2500   
4N_308 4N_B7 4N 250    
4N_309 4N_B9 4N 250 HiSeq2500   
4N_310 4N_B11 4N 250 HiSeq2500 X  
4N_311 4N_B12 4N 250 HiSeq2500   
4N_312 4N_C1 4N 250 HiSeq2500   
4N_313 4N_C3 4N 250 HiSeq2500 X  
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Strain Identifier Well Ploidy Generation WGS aCGH RNA Seq 

4N_314 4N_C11 4N 250 HiSeq2500   
4N_315 4N_D2 4N 250 HiSeq2500 X  
4N_316 4N_D3 4N 250 HiSeq2500 X  
4N_317 4N_D4 4N 250  X  
4N_318 4N_D8 4N 250  X  
4N_319 4N_E1 4N 250 HiSeq2500 X  
4N_320 4N_E2 4N 250 HiSeq2500 X  
4N_321 4N_E3 4N 250 HiSeq2500 X  
4N_322 4N_E8 4N 250 HiSeq2500   
4N_323 4N_E9 4N 250 HiSeq2500   
4N_324 4N_E10 4N 250 HiSeq2500   
4N_325 4N_F1 4N 250    
4N_326 4N_F4 4N 250    
4N_327 4N_F6 4N 250 HiSeq2500   
4N_328 4N_F10 4N 250 HiSeq2500   
4N_329 4N_F11 4N 250 HiSeq2500 X  
4N_330 4N_G4 4N 250  X  
4N_331 4N_H6 4N 250 HiSeq2500   
4N_332 4N_H10 4N 250 HiSeq2500   
4N_333 4N_H11 4N 250 HiSeq2500   
4N_334 4N_G11 4N 250 SOLiD X X 
4N_335 4N_G2 4N 250 SOLiD X X 
4N_336 4N_A8 4N 250 SOLiD X X 
4N_337 4N_F2 4N 250 SOLiD X X 
4N_g500_401 4N_g500_A1 4N 500  X  
4N_g500_402 4N_g500_A3 4N 500  X  
4N_g500_406 4N_g500_B5 4N 500  X  
4N_g500_407 4N_g500_B6 4N 500  X  
4N_g500_418 4N_g500_E3 4N 500  X  
4N_g500_420 4N_g500_E8 4N 500  X  
4N_g500_428 4N_g500_F11 4N 500  X  
4N_g500_431 4N_g500_G4 4N 500  X  
4N_gen35_501 4N_gen35_A3 4N 35  X  
4N_gen55_502 4N_gen55_A3 4N 55  X  
4N_gen35_503 4N_gen35_G2 4N 35  X  
4N_gen55_504 4N_gen55_G2 4N 55  X  
4N_gen55_505 4N_gen55_A8 4N 55  X  
4N_gen55_506 4N_gen55_A12 4N 55  X  
4N_gen55_507 4N_gen55_F11 4N 55  X  
4N_gen55_508 4N_gen55_H5 4N 55  X  

Table 15-1 Evolved strains used in these studies 
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Strain Parental 
Strain Relevant genotype Source 

BY4742 S288c MATα his3Δ lys2Δ leu2Δ ura2Δ Dowell 
Collections 

BY3295 BY4741 MATa his3Δ leu2Δ met15Δ ura2Δ (Selmecki et 
al. 2015) 

PY5997 BY3295 matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR (Selmecki et 
al. 2015) 

PY5998 PY5997 1N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY5999 PY5997 1N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-eYFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6006 PY5999 2N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-eYFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6008 PY5998 2N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6014 PY5999 2N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-eYFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6022 PY5998 2N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6031 PY6008 4N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6032 PY6022 4N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-ceCFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6040 PY6006 4N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-eYFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY6045 PY6014 4N matΔ::pSTE5-ura3::TRP1, ste4Δ::HygroR, trp1::NatR::pGAL-eYFP-tADH-SpHIS5 (Selmecki et 
al. 2015) 

PY7284 PY5999 1N SNF3-G439E (Selmecki et 
al. 2015) 

PY7289 PY5999 2N SNF3-G439E/SNF3 (Selmecki et 
al. 2015) 

PY7290 PY5999 2N SNF3-G439E/SNF3 (Selmecki et 
al. 2015) 

PY7285 PY5999 2N SNF3-G439E/SNF3-G439E (Selmecki et 
al. 2015) 

PY7286 PY5999 2N SNF3-G439E/SNF3-G439E (Selmecki et 
al. 2015) 

PY7287 PY5999 2N SNF3-G439E/SNF3-G439E (Selmecki et 
al. 2015) 

PY7288 PY5999 2N SNF3-G439E/SNF3-G439E (Selmecki et 
al. 2015) 

PY7291 PY5999 4N SNF3-G439E/SNF3/SNF3/SNF3 (Selmecki et 
al. 2015) 

PY7292 PY5999 4N SNF3-G439E/SNF3/SNF3/SNF3 (Selmecki et 
al. 2015) 

PY7293 PY5999 4N SNF3-G439E/SNF3/SNF3/SNF3 (Selmecki et 
al. 2015) 

PY7294 PY5999 4N SNF3-G439E/SNF3/SNF3/SNF3 (Selmecki et 
al. 2015) 

PY7295 S288c 2N RLY4737 MATa/α ura3Δ his3Δ trp1Δ leu2Δ 
(Pavelka, 
Rancati, Zhu, 
et al. 2010) 

PY7296 PY7295 2N RLY4888 MATa/α + chr. XIII trisomy 
(Pavelka, 
Rancati, Zhu, 
et al. 2010) 

PY7297 PY7295 4N MATa/a/α/α (Selmecki et 
al. 2015) 

PY7298 PY7295 4N MATa/a/α/α (Selmecki et 
al. 2015) 

PY7299 PY7295 4N MATa/a/α/α (Selmecki et 
al. 2015) 

PY7300 PY7295 4N MATa/a/α/α + chr. XIII pentasomy (Selmecki et 
al. 2015) 

PY7301 PY7295 4N MATa/a/α/α + chr. XIII pentasomy (Selmecki et 
al. 2015) 

PY7302 PY7295 4N MATa/a/α/α + chr. XIII pentasomy (Selmecki et 
al. 2015) 

PY7303 PY7295 4N MATa/a/α/α + chr. XII pentasomy (Selmecki et 
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Strain Parental 
Strain Relevant genotype Source 

al. 2015) 

PY7304 PY7295 4N MATa/a/α/α + chr. XII pentasomy (Selmecki et 
al. 2015) 

PY7305 PY7295 4N MATa/a/α/α + chr. XII pentasomy (Selmecki et 
al. 2015) 

ASY001 PY5999 1N rgt1Δ::KanMX This study 
ASY002 PY5999 1N rgt1Δ::KanMX This study 
ASY003 PY5999 1N rgt1Δ::KanMX This study 

Table 15-2 Engineered strains used in these studies 
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