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Rubin, J. D. (Ph.D., Biochemistry)

Mechanisms of Gene Regulation: Exploring the Activity of Transcription Factors and Mediator

Kinases

Thesis directed by Prof. Dylan J. Taatjes

The regulation of gene expression is an essential process required for proper cellular function.

This process is especially important within multi-cellular organisms which contain a variety of cell

types with specialized roles. Throughout this thesis, I will present work on development of com-

putational methods to infer transcription factor (TF) activity and investigate the role of Mediator

kinases in cellular signaling. The first half of this thesis involves work I performed to use signals of

functional TF binding to infer TF activity using motifs. This initially involved detection of bidirec-

tional transcripts from nascent sequencing data. I helped develop the first method to perform this

quantification called the motif displacement (MD) score. I then improved upon the method devel-

oping transcription factor enrichment analysis (TFEA). I show that TFEA outperforms existing

techniques and can be widely applied to different types of sequencing data. Next, I present work

on how Mediator kinases affect the interferon response. I apply the aforementioned computational

methods to show that CDK8 activity is responsible for activation of STAT and Irf family of TFs -

the main effectors of the interferon pathway. Finally, I show that Mediator kinase activity is crucial

for proper cellular response to serum. Using a variety of -omics techniques, I quantify the effects

of Mediator kinase inhibition on immediate transcriptional changes, late gene expression changes,

differential phosphorylation of key signaling proteins, changes in cellular metabolism, and defects

in cellular proliferation. Overall, this thesis makes significant strides in our understanding of how

cells regulate gene transcription/expression and the key players involved in cellular signaling.
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Chapter 1

Introduction

The regulation of gene expression is an essential cellular process required for life. In individual

cells, proper and coordinated control over protein abundance allows a cell to maintain its home-

ostasis and respond to changes in its environment. In multi-cellular life, the ability to regulate sets

of genes gives rise to a diversity of cell types with specialized functions. This can be accomplished

while maintaining an identical genomic sequence for ease of propagation and development. Gene

regulation is a highly complex process necessary for maintaining correct cellular functioning and

when dysregulated can lead to disease. In this introduction, I will discuss our current understanding

of how cells control gene expression. Essential to this process is the detection of extracellular sig-

nals resulting in their coordinated transmission to transcriptional machinery. The work described

here focuses on two aspects of transcription 1) the regulatory activity of signal-specific transcrip-

tion factors (TFs) and 2) the enzymatic activity of Mediator kinases, a component of the general

transcription machinery. What follows is a temporally ordered description of key events involved

in cellular detection of external stimuli and the coordinated intracellular response that ultimately

leads to changes in gene transcription and protein abundance.

1.1 Cellular Signaling

Generally speaking, a cell receives chemical signals from its environment that it detects

through cell surface receptors. In the classic case, these cell surface receptors are transmembrane

proteins that have ligand binding domains facing towards the extracellular space and kinase do-
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mains contained within the cytosol. Upon binding to a specific ligand, these receptors undergo

conformational changes that lead to the activation of their kinase domain. What follows is a kinase

signaling cascade in which upstream kinases phosphorylate downstream kinases which then them-

selves can phoshporylate other targets including other downstream kinases (See Figures 1.1 and 1.2

for examples). This allows for the exponential propagation of signal which is a highly coordinated

event that ultimately leads to the expression of specific genes related to responding to the initial

ligand. A couple of well-characterized pathways appear throughout this thesis and therefore I will

briefly discuss what is known about these below.

1.1.1 Interferon Signaling

Interferons are a class of proteins that are responsible for the anti-viral response in cells.

There are currently three types of known interferons (Type I, II, and III). Here I will discuss

the signaling pathway associated with Type II interferons, more specifically the only known Type

II interferon, IFN-γ. IFN-γ has been shown to play roles in both viral and bacterial infection

(ref). It binds specifically to the IFN-γ receptor (IFNGR) which becomes phosphorylated and

activated by JAK1/2. Activated IFNGR leads to the phosphoyrlation and activation of STAT1

which dimerizes and translocates into the nucleus to regulate expression of genes related to the

inflammatory response. In addition to the inflammatory response, IFN-γ is known to also play

roles in cell proliferation through the MAPK pathway and cytokine production through NF-κβ. A

summary of the IFN-γ pathway is shown in Figure 1.1
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Figure 1.1: The IFN-γ Pathway. From https://www.rndsystems.com/pathways/type-ii-

interferon-signaling-pathways
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1.1.2 Response to Serum

Serum is a heterogeneous mix of nutrients and growth factors typically required for cell

proliferation in cell culture models. The serum response is a model system used to study cell

proliferation in which cells are first starved of serum followed by induction with serum-containing

media. Since serum is a heterogeneous mix, typically derived from bovine fetuses, the serum

response pathway is highly complex and not completely understood. Although the main response

to serum is cellular proliferation, of particular interest in the studies described here is its interplay

with infection pathways (ref). Studies have shown that the main downstream effector of the serum

response (Serum Response Factor; SRF), can indirectly modulate Type I interferon response (Xie

et al. 2013) and that some mitogens regulate cellular proliferation through the IFN-γ pathway

(Ramana et al. 2001).

1.1.3 Cell Proliferative Signaling

Canonically, cell proliferative signaling refers to the mitogen-activated protein kinase (MAPK)

pathway. This is a well-studied signaling pathway that ultimately results in cell proliferation. How-

ever, despite the simplicity of promoting cell proliferation as a functional outcome, the MAPK path-

way is a complex network of protein interactions. This networks includes the activation of other

cellular pathways that are necessary to properly regulate this proliferation to ensure an appropriate

cellular response to mitogen signaling. The complexitiy of the MAPK pathway is evidenced by the

known relationships between dozens of proteins shown in Figure 1.2
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Transcription 
Factors

Figure 1.2: The MAPK Pathway. From https://www.cusabio.com/pathway/MAPK-signaling-

pathway.html

1.2 Transcription Factors

Transcription factors (TFs) are a class of proteins that are responsible for coordinating the

transcription of sets of genes. Typically, in its simplest form, TFs contain a DNA binding domain

and a transactivation domain (see Fig 1.3a). The DNA binding domain affects what sequences

a TF prefers to bind to while the transactivation domain is responsible for effecting changes in

transcription through a variety of mechanisms. To effect changes in target gene transcription, TFs

can bind to proximally (at promoters) or distally (at enhancers). Whether a TF binds preferentially

to promoters or enhancers varies as do their mechanisms of action. In this section I will discuss

several important aspects of TFs starting with mechanisms by which a TF can become active.

Next, I will briefly describe key aspects that determine where a TF binds and the consequences of
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this binding event. Finally, I will touch on how the direct consequences of TF binding can induce

or repress target gene transcription.

p53 Motifp53 Domains

AD1: Activation domain 1
AD2: Activation domain 2 
PRO: Proline-rich domain
DBD: DNA-binding domain
NES: Nuclear exclusion signal
NLS: Nuclear localization signal
Oli: Oligomerization domain
C-ter: Carboxy-terminus domain

a

b c

Figure 1.3: TF Domains. (Lambert 2018) and (Soussi 2016)

1.2.1 TF Activation

Ultimately, the activation of a cellular signaling cascade results in the activation of one or

multiple TFs. These TFs then go on to effect changes in global gene expression. A TF can

be activated in several different ways. Classically, these activation mechanisms require that the

TF itself or a binding partner of a TF become phosphorylated by some upstream kinase. TFs

or co-factors that become activated can then perform designated functions through a variety of

mechanisms. Phosphorylation can directly affect TF activity by changing it’s binding partners

which can be accomplished by modifications to oligomerization domains on TFs, by modifying
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binding interfaces between a TF and a co-factor, or by causing conformational changes to the TF

or co-factor. These changes to binding partners can then result in several functional outcomes

depending on the TF and the co-factor. Additionally, upstream kinases can affect the nuclear

localization of a TF (or its co-factor) through phosphorylation of a nuclear localization signal or

nuclear exclusion signal thus activating a TF by localizing it (or its co-factor) to the nucleus. Often,

TFs have one or multiple of these mechanisms of action that all contribute to affecting its activity.

1.2.2 TF Binding to DNA

Once a TF becomes activated, it then exerts its regulatory influence by binding to DNA.

However, a TF cannot simply bind non-specifically to DNA but instead must recognize specific

sequences to properly accomplish its regulatory role. Studying the process by which TFs recognize

specific sequences of DNA first requires a way to measure where a TF is binding across the genome.

This can be accomplished by several experimental methods. The classic approach to measuring

TF binding is through a technique called Chromatin Immuno-Precipitation (ChIP) which involves

cellular cross-linking followed by pull-down of a protein of interest using an antibody. Sequences

bound to the protein of interest are then either determined by microarray (ChIP-chip) or by next

generation sequencing (ChIP-Seq). Using this technique, researchers have been able to empirically

determine the sequence preference of many TFs, which are referred to as TF motifs (discussed

further below). A complementary approach called SELEX accomplishes the same task but using

in vitro binding of immobilized TFs to a set of random DNA sequences. Each method has its

strengths and weaknesses. For instance, SELEX will be blind to chromatin associated effects of TF

binding, whereas ChIP may be biased by co-factors, change depending on biological context, and

also requires an antibody which has known caveats(Marcon 2015 and Uhlen 2016). Furthermore,

sequences obtained via ChIP are always larger than the actual bound sequence due to the details

of the technique (although this can be improved using ChIP-exo (Rhee 2012)). Ultimately these

techniques result in high quality motifs for hundreds of TFs of interest (of the thousands present

in the human genome). A comprehensive list of methods for measuring TF binding specificities is
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shown in Figure 1.1.

Table 1.1: Methods for Measuring TF Specificity.
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1.2.3 TF DNA-binding Motifs

By experimentally measuring TF binding, we can directly either directly measure or infer the

sequence specificity of a given TF. Inferences must be made when using techniques that capture

flanking sequences as well (i.e. ChIP). In reality, a TF does not bind a single sequence exclusively

but instead has a range of affinities for different sequences preferring to bind to some over others.

These preferences can be described as a position specific scoring matrix (PSSM), also known as a

position weight matrix (PWM). Essentially this representation quantifies the probability of finding a

given nucleotide at a given position from a set of sequences derived through a TF-binding assay. This

is commonly referred to as a TF motif. As sequencing techniques have become more common and

cost effective, there has been a drive of the TF community to characterize and curate databases with

these TF motifs. Two notable examples are the HOCOMOCO (Kulakovskiy 2017) and JASPAR

databases (Fornes 2019). Of an estimated several thousand TFs in the human genome (ref),

HOCOMOCO contains 600 and JASPAR contains 1500 motifs. Since these motifs are empirically

determined from a variety of sources, their quality can be variable. Additionally, TFs that are

related in an evolutionary sense can have very similar motifs. As more experiments and validations

are performed, these databases will continue to improve.

An important aspect of these motif databases is that they can be used as a standardized

resource for collections of TF motifs. These motifs can then be used to find statistically significant

sequence matches across the human genome. Depending on the complexity of the motif and the

cutoffs used when scanning, the number of TF motif instances across the genome can be anywhere

from tens to millions. However, these hits are typically orders of magnitude more abundant than

actual TF binding. This discrepancy can be explained by differences in chromatin accessibility as

well as binding of other factors. Despite this caveat, these genome-wide motif hits allow researchers

to analyze overlaps and enrichment of these motifs within their own datasets with minimal over-

head. Throughout this thesis, these TF motifs will become a critical asset in the development of

computational approaches to infer TF activity.
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Figure 1.4: Enhancer Schematic (David Deen (http://www.daviddeen.com/)).

1.2.4 Enhancers

Classically, TFs bind to regions of the genome called enhancers and promoters. Promoters

are well-defined regulatory regions immediately upstream of a gene. Enhancers on the other hand

are still being characterized and therefore what is considered an enhancer is still a widely debated

topic. The genetic definition of an enhancer is a sequence of DNA that upon insertion into a

reporter assay, can drive the expression of a gene regardless of orientation or position relative

to the target gene. As sequencing techniques have become more widespread, this definition has

incorporated other aspects of observed enhancer characteristics. One such aspect is the deposition

of the histone mark H3K27ac which can recruit regulatory protein complexes which can contain

bromodomains (Raisner 2018). Other marks such as H3K4me1 and H3K4me2 have also been

associated with enhancers (Calo2013), although some argue that these marks are instead simply

a readout on transcriptional levels (Core 2014). More recently, nascent sequencing ((i.e. Global

Run On (GRO) (Core 2008), 4-thiouridine (4sU) (Windhager 2012), Bromouridine (Bru),(Paulsen

2013), and transient transcription (TT-Seq) (Schwalb 2016), Precision Run On (PRO) (Mahat

2016) -Seq, see (Wissink 2019) for a full review) has revealed that some enhancers themselves are

transcribed. The resulting enhancer RNA (eRNA) typically (but not always) has the signature of a

bidirectional transcript (RNAs transcribed in the forward and reverse strand from a single point of

origin Figure 1.4). This bidirectional transcript is presumably due to the lack of strand specificity

inherent to the transcriptional machinery.
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Figure 1.5: Mechanisms of TF-dependent Enhancer Activation (Francois 2012).
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1.2.4.1 Enhancer Function

How enhancers and eRNAs function to regulate gene transcription is still a widely debated

topic. This is complicated by the fact that not all TF binding results in eRNA transcription and

assigning an enhancer to its target gene is a difficult task to perform in a high-throughput manner

using current experimental approaches. While the effects of eRNA production are still being ex-

plored, several mechanisms have been proposed on how, after TF binding, a bound enhancer region

can recruit co-factors or change the chromatin landscape (Figure 1.5). While these mechanisms

describe molecularly what happens at enhancers, it does not explain why there are many more

enhancers than genes and many TF binding sites per enhancer. These aspects of enhancers are to

presumably have tighter control over gene expression. This explanation makes sense if instead of

viewing gene expression as a binary on/off switch, we posit that the actual levels of gene expression

are important for correct cellular function (Lee 2013). In this case, having many enhancers that

you can tightly control using TFs allows a cell to fine tune the expression of genes (see Figure

1.6). Another prevailing theory (and these are not mutually exclusive) is that enhancers function

to create phase-separated domains.

Figure 1.6: TF and enhancer circuitry

Phase separation is a way to compartmentalize biological molecules within a cell without
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the use of a lipid membrane. Researchers have proposed that due the weak interactions between

eRNAs and the intrinsically disordered domains found on TFs and many of the general transcription

machinery could create phase separated domains. These liquid-like droplets could be a mechanism

by which cells can maintain high concentrations of biological molecules required for transcription

thus mitigating the need to search the large genomic space for genes to transcribe. This mechanism

also allows for re-engaging of polymerase after it finishes transcribing at highly expressed genes. A

summary of potential interactors in the phase separation model is shown in Figure 1.7.

Figure 1.7: Enhancer Phase Separation Model. (Hnisz 2017)

1.3 Transcription

Transcription is the process by which DNA is converted to RNA. In eukaryotes, three RNA

Polymerase (RNAP) enzymes are responsible for transcription of different RNAs (RNAPI - ribo-

somal RNA, RNAPII - protein coding genes, RNAPIII - 5S ribosomal subunit, tRNAs, and other

small RNAs). Transcription occurs generally in three stages: loading/initiation, elongation, and

cleavage/termination. Each stage has critical regulatory function and events important for proper

RNA processing occurs at each stage. Below I will discuss these stages of transcription as they relate



14

to the behaviour of the main transcription enzyme of protein coding genes RNAPII. A summary

of the transcriptional stages discussed in these sections is show in Figure 1.8.
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Figure 1.8: Stages of Transcription.
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1.3.1 Chromatin Opening

Chromatin refers to the organizational structures in a cell containing DNA, RNA, and protein

that make up chromosomes. The main structural unit of chromatin are large protein complexes

called histones that wrap around DNA forming nucleosomes. Organization of the DNA into chro-

matin allows for regulation of gene transcription and proper packaging of genetic material for cell

division. To begin transcription of a gene, the region encompassing that gene must first be ac-

cessible for binding of other factors and enzymes (step 1 in Figure 1.8b). Chromatin accessibility

can range from completely inaccessible to open usually determine by specific marks deposited on

histones (see Klemm 2019 for review). As described previously, TFs are largely responsible for

opening chromatin by directly recruiting specific enzymes that can displace nucleosomes or by

indirectly depositing histone marks that then recruit said enzymes. Once a region of chromatin

becomes accessible, protein factors can be recruited to begin the process of transcription.

1.3.2 The Pre-Initiation Complex

Transcription is a highly regulated and complex process that involves the interplay of many

protein factors. Generally, to transcribe a gene, a coordinated assembly of a pre-initiation complex

(PIC) is required (Figure 1.9, step 2 in Figure 1.8b). Assembly of the PIC involves recruitment of

several general transcription factors (GTFs) including TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and

TFIIH. These GTFs play specific roles in recruiting RNA Polymerase II (RNAPII) to designated

regions along the genome and stabilizing different complexes (see Gupta 2016 for review). Another

key component of the PIC is the Mediator complex that I will discuss in more detail in section 1.4.
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Figure 1.9: Assembly of the Pre-Initiation Complex.

1.3.3 Loading and Initiation

Loading and initiation are thought to be the main point of regulation within the transcription

process. To load, a RNAPII enzyme is first recruited onto DNA and then initiates by transcribing a

small amount ( 8-14nt) (Sims III 2004) (step 3 of Figure 1.8b). Since there are two strands of DNA,

RNAPII must choose the correct ”sense” strand to transcribe the coding region of a specified gene.

Inherently, the RNAPII enzyme itself is not strand-aware and must rely on components of the PIC

to guide its decision of which strand to transcribe. This decision is not always a completely binary

one leading to the observation of bidirectional transcripts or RNA molecules produced from both

strands originating from a common point of RNAPII loading (see Figure 1.4 and Figure 1.8a). This

phenomenon occurs both in regions that do not contain a sense direction (i.e. enhancers) but also

in regions that have a coding gene and therefore a sense direction. This bidirectionality is likely

due to the inherent stochasticity of RNAPII loading and strand decision. While these bidirectional

transcripts have not been well studied, they can be used as a signature for sites of RNAPII loading

which will be discussed later in this thesis.
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1.3.3.1 Pausing

Once a RNAPII enzyme loads onto DNA, picks a strand, and initiates, it releases from the

PIC and transcribes another small amount ( 60bp) before pausing (Adelman 2012) (step 4 in

Figure 1.8b). This pause is largely seen in nascent sequencing data and can theoretically be due to

a physical resident pause of RNA polymerase or abortive transcription. Either way, we will refer to

this phenomenon as pausing as that is the prevailing model and referenced most in the literature

(Adelman 2012). RNAPII pausing is an elusive process that is hard to study due to the sparsity

of methods that can be used to quantify this phenomenon. It is estimated that around 30% of

genes exhibit pausing (Adelman 2012). The molecular mechanisms of pausing involve association

of several factors with the transcribing complex containing RNAPII. NELF and DSIF are two

canonical pausing factors that associate with transcribing RNAPII causing it to pause (Muse 2007,

Wada 1998, Yamaguchi 1999). More recently, the GTF TFIID was shown to be sufficient for

RNAPII pausing (Fant 2020). Pausing has been proposed to serve a variety of functions for gene

transcription. Broadly speaking, these proposed mechanisms involve maintaining open chromatin

(Wu 1980, Costlow 1984, Gilchrist 2010), synchronizing gene transcription (Gressel 2017, Shao

2017), and facilitating RNA processing (Rasmussen 1993, Tome 2018).

1.3.4 Elongation

Paused RNAPII complexes become released into productive elongation following the phos-

phorylation of NELF and DSIF by the super elongation complex (SEC) containing PTEF-b (step

5 in 1.8b). Elongation is the process by which RNAPII transcribes along a gene body (i.e. the

region of a gene that is between the pause site and transcription end site, step 6 in Figure 1.8b).

Depending on the gene and cellular context, elongation proceeds at a rate of 2-4kb/min (refs).

As a nascent RNA is being transcribed, protein factors can associate with the RNAPII

complex or the RNA itself to facilitate splicing. Splicing is the process by which non-coding

regions of a gene (introns) are excluded in favor of coding regions (exons).This process happens
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co-transcriptionally and is also proposed to involve phase-separation (ref). Splicing allows for

different functional isoforms of a single gene by varying inclusion/exclusion of different exons,

modifying transcription start sites, and differential inclusion of introns. Splicing is a key player

in gene regulation and has gained attention as many diseases are associated with defects in the

splicing process (ref). Additionally, changes to elongation rates can have effects on splicing (refs).

1.3.5 Termination

Termination of transcription describes the process by which the polymerase enzyme releases

from DNA. This is temporally preceded by cleavage of the nascent RNA. Termination is an essen-

tial process that is required for proper processing of RNAs following transcription and therefore

essential for the proper expression of genes into protein products. Two models have been proposed

for how termination is accomplished molecularly. The first model states that the RNAPII enzyme

detects poly-adenylation sequences (PAS) and undergoes conformational changes leading to proper

termination via the recruitment of the cleavage and poly-adenylation complex (CAP) (Zhang 2015).

The second model, called the torpedo model, states that after cleavage of the nascent RNA, the

exonuclease Xrn2 begins degrading the RNA being produced by the still-elongating RNAPII en-

zyme. Once Xrn2 catches up with RNAPII, this triggers its release from DNA (Connelly 1988,

Proudfoot 1989). Recently, termination has been shown to be affected by cellular stress with the

observation that after heat shock, global polymerase occupancy extends far beyond the observed

PAS in non-treated cells (Cardiello 2018).

1.4 Mediator

Among the GTFs that make up the PIC is a large protein complex called Mediator, an

essential factor for regulated transcription by RNAPII. Mediator functions as a molecular bridge,

communicating the signals from distal TF binding events to the PIC. This is accomplished by

undergoing conformational changes in response to co-factor binding such as RNAPII or different

TFs (Figure 1.10). These conformational changes then act as signals that can be relayed to the
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PIC.

Figure 1.10: Mediator Conformational Changes. (Allen 2015)

Mediator is considered a regulatory hub and required for the downstream activation of genes

in response to TFs following a cellular signaling cascade. Specific TFs can bind to regions across

the Mediator complex resulting in different functional outcomes (Figure 1.11). In addition to the

core Mediator complex, there are two kinases (in humans) that form their own submodules and

can reversibly associate with Mediator - CDK8 and CDK19.
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Figure 1.11: Mediator Functions Downstream of Signaling. (Allen 2015

1.4.1 Mediator Kinases

As briefly described above, Mediator kinases are cyclin dependent kinases (CDKs). In con-

trast to the classic CDKs that associate mostly with the cell cycle, Mediator kinases are part of

so-called transcriptional CDKs. Transcriptional CDKs are known to have effects on transcription

as part of larger complexes such as CDK7 which associates with TFIIH and CDK9 which asso-

ciates with PTEF-b. While CDK7 and CDK9 are relatively well-studied, Mediator kinases remain

enigmatic. Below I discuss several known aspects of Mediator kinase function including their role

in disease.

1.4.2 CDK8 Transcriptional Effects

Because of their association with Mediator, Mediator kinases were first studied as a part

of the general transcription machinery. Their association with Mediator and the general PIC was

confirmed using pulldown techniques (ref). Initially, CDK8 was found to repress transcription inde-

pendent of its kinase activity in in vitro transcription assays (Knuesel 2009). Supplementation with

additional RNAPII enzyme was found to relieve that repression suggesting these might compete

for binding within the PIC. This was further confirmed by the observation that stably associated

RNAPII-containing PICs were not affected by addition of CDK8. This has been described as a
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mechanism by which CDK8 could facilitate promoter escape (ref matt galbraith?) by binding to

Mediator. Upon promoter escape of RNAPII, CDK8 would then dissociate allowing for a new

RNAPII molecule to be recruited to the PIC (Figure 1.12). This molecular switch mechanism

described a way in which cells could consistently transcribe genes without the need to re-assemble

a new PIC for each transcription event.

Several studies have supported a role of CDK8 in transcription. Within the serum response,

researchers discovered that the CDK8 protein was required for elongation of serum response genes.

This study attributed this elongation defect to a lack of PTEF-b recruitment, a component of the

super elongation complex (SEC). Further support for the role of CDK8 in regulating the SEC came

from studies characterizing the direct targets of Mediator kinase activity (poss). [Other studies?]

Figure 1.12: CDK8 Function within the PIC.

1.4.3 CDK8 Signaling Effects

In addition to its roles as a regulator of general transcription, CDK8 has also been shown

to play roles in cellular signaling. Among its known targets, transcription factors (TFs) make

up a significant portion (25% see Figure 1.13) (Poss 2016). In initial studies, CDK8 was found

to be a positive co-regulator of p53 target genes (Donner et al. 2007). This study found an

association of CDK8 module binding at p53 target genes using different cellular stimuli to activate

the p53 pathway. In a cancer study, CDK8 expression was shown to correlate with the expression
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of β-catenin, a key player in Wnt signaling, in colorectal cancer patients with poor prognosis.

However, CDK8 knockdown did not affect the expression of β-catenin in this study (ref Seo et al.

2010). Additionally, CDK8 was shown to be involved in lipogenesis during starvation through the

regulation of the TF SREBP-1 in Drosophila, mice, and humans (Zhao et al. 2012). These effects

were shown to be mediated by SREBP-1 phosphorylation and inhibited by the overexpression

of Cyclin C, the kinase activating cycling associated with CDK8. Furthermore, a recent study

implicated CDK8 as a regulator of gene expression within the TGF-β/SMAD signaling pathway

(ref Liang et al. 2018). CDK8 was shown to regulate the expression of matrix metalloproteinases

through regulation of the microRNA miR-181b. This study found CDK8 inhibition to be an

effective means to limit growth of metastatic colorectal tumors in the liver. Finally, several studies

have implicated Mediator kinases within the IFN-γ pathway (ref Steinparzer 2018, Guo 20190 in

response to either IFN-γ treatment or cellular differentiation. These studies point a role of CDK8 in

cellular signaling, especially in response to changes in the cellular environment due to perturbations

or cellular context. However, most research in this field lacks true mechanistic insight into exactly

how Mediator kinases drive these transcriptional reprogramming events.
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Figure 1.13: CDK8 Targets.

1.4.4 Mediator Kinases in Disease

Mediator kinases have gained attention largely due to their association with disease. In

particular, CDK8 has been shown to be overexpressed in colorectal cancers with overexpression

correlating with negative outcomes in patients (ref). Additionally, CDK8 and CDK19 play crucial

roles in development - as evidenced by the embryonic lethality of CDK8 (Westerling 2007) and the

association of CDK19 with developmental disorders (Mukhopadhyay 2010, Chung2020). Because

of its disease association, time and effort have been spent in investigating the mechanisms by which

Mediator kinases can cause disease. However, these mechanisms are not completely understood, in

part because of its various roles in different cellular contexts.
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Figure 1.14: CDK8 in Cellular Signaling and Disease.

1.4.5 Mediator Kinase Inhibition

One major question left to be answered is whether Mediator kinase activity plays a major role

in these phenotypes. In several cancers, including AML, the kinase activity itself has been shown

to be necessary for cell proliferation. This has led researchers to screen small molecules to be used

as therapeutics. One of these molecules, called Cortistatin A (CA) was found in sea sponges in a

search for antiproliferative compounds against AML specifically (Ref). CA is an especially potent

and specific inhibitor of Mediator kinase activity, found to be selective in kinome-wide screens for

CDK8 and CDK19 over all other kinases. CA is the main inhibitor used in the second half of this

thesis and has been shown to decrease tumor burden in animal models of AML (Pelish). The cell

proliferative effects of Mediator kinase inhibition has already been shown to be inconsistent across

cell types. Despite its overexpression in colorectal cancer, similar cell proliferation defects were not

found in cell culture models following treatment with Mediator kinase inhibitors. However, one
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study found defects in liver metastases of colon cancer tumors in mice following Mediator kinase

inhibition. Why Mediator kinase inhibition is cell type specific and the mechanistic roles of these

kinases in cell proliferation are still open questions.

Figure 1.15: Cortistatin A Selectivity for Mediator Kinases.

1.5 Thesis Summary

In this thesis, I will present work that describes the development of a computational method

for detecting TF activity followed by the application of that method to study the role of Mediator ki-

nases within signaling networks. In the first chapter, I present early work on the motif-displacement

(MD) score approach, a technique that takes advantage of eRNA detection in combination with

in silico derived TF motif locations to quantify TF activity. This technique was shown to accu-

rately capture known TF activation following perturbation. In the second chapter, I expand on

this technique with another computation technique called Transcription Factor Enrichment Anal-

ysis (TFEA). TFEA adds several improvements to the MD-Score method including the ability to

detect non-binary changes to eRNA transcription as well as a principled way to handle sample repli-

cates. I show that TFEA outperforms the MD-Score in single timepoint perturbation experiments.
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Using data simulation, I show that TFEA also outperforms similar software in its minimization

of false positives. Finally, using publicly available time series datasets, I show that TFEA can

deconvolute complex regulatory networks and arrive at mechanistic inferences across different data

types. In the third chapter, I transition to studying Mediator kinase activity, specifically how it

relates to the IFN-γ response in mouse and human cells. Employing the MD-Score approach, I show

that the activity of IFN-γ related TFs decreases following Mediator kinase inhibition. This study

also showed the relative contributions of CDK8 and CDK19 to this response. Finally, in the fourth

chapter of this thesis, I present work on how Mediator kinase inhibition affects cellular proliferation

during serum response in a colon cancer cell culture model. Using a variety of -omics techniques,

I probe the effects of Mediator kinase inhibition on transcription, gene expression, metabolism,

protein phosphorylation, and cell proliferation. The results of this study ultimately lead to key

insights into Mediator kinase activity and suggest that this could be a therapeutic strategy for

treatment of colon cancer.



Chapter 2

Motif Displacement Scores

2.1 Preamble

An observation from nascent sequencing is that sites of polymerase loading and initiation

often exhibit bidirectional transcription (Core 2008). Furthermore, distal sites of bidirectional

transcription were found with no annotated gene nearby. Later, these sites were found to be

associated with enhancers and these distal (relative to genes) bidirectional transcripts became

known as enhancer RNAs (eRNAs). Several groups then found that upon activating a transcription

factor, the levels of eRNAs increased and these eRNAs overlapped with the activated TFs motif

(refs). We therefore sought to determine whether this was a general phenomenon of TF activation

and whether it could be used as a marker for TF activity.

2.1.1 Significance

A cell undergoes functional reprogramming to determine cell fate through the activation

of transcription factors (TFs). Therefore, measuring TF activity is a global readout of cellular

processes. Measuring this activity however is a difficult task, especially since there are estimated

to be 1800 TFs in the human genome. Historically, measuring TF activity has relied on detecting

TF binding via ChIP. However, recent evidence shows that not all TF binding events are functional

(ref). In addition, ChIP relies on antibodies which have known caveats. ChIP is also a low-

throughput technique only capable of measuring binding of one TF at a time. Gene expression has

been combined with ChIP to obtain more reliable measures of activity however, the poor temporal
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dynamics of RNA-Seq coupled with the non-trivial need to assign TF binding sites to target genes

has limited the effectiveness of this approach.

In this work, we devised a method to computationally measure TF activity based on the

locations of eRNAs relative to TF motifs. This allowed us to measure the activity of any TF whose

motif was known. Because there exist repositories with such motifs, this method allowed us to

simultaneously measure the activity of hundreds of TFs from a single experiment. We further show

evidence here that eRNA transcription correlates with target gene transcription, a crucial point

that supports a functional role for eRNAs.

This work was published in Genome Research Volume 28, Pages 334-344 on February 15,

2018 (doi: 10.1101/gr.225755.117).

2.1.2 Contributions

This was a highly collaborative project with many researchers contributing significantly to

its completion. The majority of this work involved metric development and testing which was

completed by Dr. Azofeifa. Data husbandry was completed by Dr. Allen and Josephina Hendrix.

Finally, Dr. Read made significant contributions to method evaluation. What follows are my

specific contributions to this project.

I joined this project shortly after a then graduate student in the lab, (now) Dr. Azofeifa,

had developed an algorithm to model RNA polymerase II behaviour to detect the presence of

bidirectional transcripts which were putative enhancers and gene promoters[?]. A then post-doc in

the lab, Dr. Allen, had observed that in response to the small molecule activator of p53 Nutlin,

eRNAs became transcribed over p53 motifs[?]. We therefore sought to devise a way to quantify

this effect more broadly.

I began under the guidance of Dr. Azofeifa to first determine whether the p53 motif could

be recovered from bidirectional transcripts. I then used this motif to determine the co-localization

of the p53 motif relative to the locations of identified bidirectional transcripts. While performing

this task, I realized there was no need to perform de novo motif discovery as there were publicly
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available databases containing hand-curated TF motifs (HOCOMOCO, JASPAR). I then wrote

scripts to perform the motif displacement analysis on all motifs within the HOCOMOCO database.

The first measure of TF activity was performed by fitting the histogram of motif hits to a normal

distribution. We began by using the p-value associated with that fit as our measure of TF activation.

The first evidence to support the validity of this approach involved measuring these p-values for

the p53 motif in HCT116 cells treated with DMSO, Nutlin, or a p53 -/- cell line. We observed

that the normality of the distribution of p53 motifs over bidirectionals increased as we moved from

the knockout cell line, to DMSO treated cells, to Nutlin treated cells. Eventually, we switched to

a simpler metric that measured the number of motif hits within a small window compared to the

motif hits within a larger motif window called the motif displacement score (MD-Score). The data

and experiments associated with this analysis would eventually become Figure 3a of this paper.

In addition to these preliminary analyses, I performed supporting work associated with this

paper. I wrote scripts to perform an intersection of identified bidirectional transcripts with all

available histone marks in HCT116 cells from the ENCODE repository used in Figure 1b. I also

developed a support vector machine to determine which of these marks was most predictive of the

presence of bidirectional transcripts - unsurprisingly, the result was H3K27ac.

What follows is the culmination of several years of weekly meetings and many hours of

analysis and re-analysis, mostly by Dr. Azofeifa. The results of this study were published in

Genome Research and are as follows.
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Transcription is orchestrated by the sequence-specific binding of
transcription factors (TFs) to DNA, resulting in regulation of
gene expression programs (Spitz and Furlong 2012). Hence, TFs
function as major determinants of cell state (Takahashi and
Yamanaka 2006; Rackham et al. 2016). Chromatin immunopre-
cipitation (ChIP) studies have identified binding sites for many
of the approximately 1400 TFs encoded within the human ge-
nome (Vaquerizas et al. 2009), allowing estimation of a DNA-bind-
ing motif model for more than 600 factors (Kulakovskiy et al.
2013). However, studies comparing TF binding events to RNA ex-
pression levels have revealed that many TF binding sites have no
apparent effect on nearby transcription (Li et al. 2008; Fisher
et al. 2012; Read et al. 2016). Distinguishing such “silent” TF bind-
ing events from those with regulatory capacity is a fundamental
challenge. Despite their critical importance for controlling cellular
phenotypes, it is difficult to ascertain when a TF is active, e.g., con-
tributes to nearby transcription.

One notable attempt to infer TF activity leveraged patterns of
TF motif instances at annotated protein coding genes to explain
changes in expression (The FANTOM Consortium and Riken
Omics Science Center 2009; Balwierz et al. 2014). Yet, most TF
binding occurs within regions of the genome distal to protein
coding genes (Spitz and Furlong 2012). These binding events often
correspond to enhancer regions known to be important for regula-
tion of gene expression and cellular identity (Heintzman et al.
2009). Active enhancers are often characterized by the presence
of short, unstable, bidirectional transcripts termed enhancer
RNAs (eRNAs). When a specific TF is activated, eRNA transcription
generally increases at the location of the TF binding event (Danko
et al. 2013;Hah et al. 2013; Allen et al. 2014; Puc et al. 2015).While
the functions of eRNAs are only beginning to be understood (Hah
et al. 2013; Li et al. 2013; Sigova et al. 2015), their presence is none-

theless an indicator of enhancer activity (Andersson et al. 2014;
Danko et al. 2015).

eRNA detection requires extremely sensitive methods, both
in the laboratory as well as computationally. Because they are un-
stable, eRNAs are rarely observed via steady-state RNA assays such
as RNA-seq. Nascent transcription assays capture transcription
throughout the genome, including eRNA transcription (Core
and Lis 2008; Core et al. 2014; Nojima et al. 2015).We recently de-
scribed a model capable of estimating sites of bidirectional tran-
script initiation at single-base-pair resolution (Azofeifa and
Dowell 2017). Transcription fit (Tfit) leverages the known behav-
ior of RNA polymerase II (RNAP) to identify individual transcripts
within nascent transcription data (Azofeifa and Dowell 2017).
Although Tfit does not implicitly assume polymerase initiation
will be bidirectional, we observed bidirectional transcription at
both promoters and enhancers (Azofeifa and Dowell 2017).
Whether bidirectional (two transcripts) or unidirectional (one
transcript), ourmodel precisely infers the point of RNApolymerase
loading, i.e., the origin point of transcription.

Here, we leverage the Tfit model to ascertain TF activity. We
show that, by calculating the frequency of TF binding motif in-
stances relative to the location of eRNA initiation, the activity
of the TF itself can be inferred from nascent transcription data
alone. We apply our model to hundreds of publicly available hu-
man and mouse nascent transcription data sets to discover previ-
ously unknown links between TF activity and diverse biological
phenomena.

Results

eRNA origins mark sites of regulatory TF binding

To utilize Tfit across a broad set of nascent transcription data sets,
wemodified the algorithm both to rapidly identify all sites of tran-
script initiation genome-wide and to account for the variable
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distances between forward and reverse
strand transcriptsobservedacross distinct
nascent transcription data sets (see
Methods). As a first application and
validation of this revised algorithm, we
identified 39,633putative sites of bidirec-
tional transcription in a K562 GRO-cap
data set (Core et al. 2014), of which
30,324werenot associatedwith an anno-
tated promoter (Supplemental Figs. S1,
S2). As previously observed (Danko et al.
2015; Azofeifa and Dowell 2017), marks
of active chromatin as well as TF binding
events strongly associate with Tfit-pre-
dicted sites of bidirectional transcription
(Supplemental Figs. S3–S5; Supplemental
Table S1). Given their distal location rela-
tive to promoters, their overwhelming
co-association with marks of active chro-
matin, and their association with TF
binding complexes (Supplemental Fig.
S6), we refer to non-promoter-associated
Tfit polymerase loading positions as
eRNA origins.

Although the vast majority of eRNA
origins localize with TF binding, only a
fraction of TF binding sites overlap
eRNA origins (Supplemental Fig. S3A).
Previous efforts to predict sites of TF bind-
ing using joint eRNA and TF-DNAmotifs
focused on only a small set of TFs (Danko
et al. 2015). We extended this analysis to
include 139 TF ChIP-seq experiments
and observed a wide spectrum of associa-
tion between TF binding sites and eRNA
presence, suggesting that eRNA presence
alone is not sufficient to fully explain TF
binding (Fig. 1A). These data are consis-
tentwith the observation that only a frac-
tion of TF binding sites result in a
concomitant change in nearby gene ex-
pression (Cusanovich et al. 2014; Savic
et al. 2015).

Given the strong relationship be-
tween active chromatin and eRNA tran-
scription, we asked whether eRNAs
discriminate “silent” from “active” TF
binding. In support of this hypothesis, TF binding sites occurring
at sites of eRNA origination display a significantly increased over-
lap with canonical marks of active chromatin relative to non-
eRNA-associated TF binding (Fig. 1B). Moreover, no statistical dif-
ference is detected between these categories for repressive chroma-
tin marks.

Although regulatory TF binding is often enriched for open
and active chromatin, functional TF binding must ultimately
lead to a change in gene expression. To this end, we considered
TF binding events within enhancers conserved between two cell
types but differing in terms of eRNA presence with the hypothesis
that neighboring gene expression would be elevated in the eRNA-
harboring cell type (Fig. 1C). There are 95 TFs profiled in at least
two cell types for which cell-type–matched nascent transcription
is available (Supplemental Table S2). For example, binding of the

TF NR2F2 was profiled in both K562 andMCF-7 cell lines, yielding
30,618 and 16,678 binding peaks, respectively, with 3491 peaks
shared between the two cell types (Fig. 1D). Of these cell-type–in-
variant peaks, 25% harbor an eRNA origin in both cell types, 7%
only in K562, and 12% only in MCF-7, and 56% do not harbor
an eRNA origin in either cell type.Measuring the transcription lev-
el of nearby target genes (TF binding site <10 kb of gene promoter)
revealed that eRNA presence is significantly correlated with elevat-
ed local gene expression (P-value <10−6). After making a total of
262 possible pairwise cell type comparisons (95 TFs, four cell
types), we noted that 73% of these comparisons display such dy-
namics (Fig. 1E; Supplemental Table S2). In the same vein, TF bind-
ing sites that overlap a region with strong enhancer activity—as
measured by a CapStarr-seq enhancer assay (Vanhille et al. 2015)
—are five times more likely to associate with eRNAs than regions

Figure 1. Enhancer RNA (eRNA) presencemarks the active subset of TF binding. (A) ROC analysis of TF
binding site prediction via eRNA presence. False-positive and true-positive rates are varied by threshold-
ing the penalized likelihood ratio statistic generated from Tfit. (B) TF binding peaks (Supplemental Table
S1) were grouped according to eRNA association. A box-and-whiskers displays the median/variability in
proportion of histone mark association between the groups across all TFs (Supplemental Table S1).
Asterisks indicate a P-value <10−10 by z-test. All data in A and B are K562 cells. (C) Pairwise cell type–as-
sociated TF binding peaks were grouped according to eRNA presence from matched cell types
(Supplemental Table S2). A gene was considered “neighboring” by a distance <10 kb. (D) Log base
10 FPKM fold change of “neighboring” genes related to eRNA-grouped NR2F2 binding peaks. (E)
Histogram of Log base 10 FPKM fold change of “neighboring” genes for all possible eRNA-grouped
TF ChIP-seq data sets (n = 255).
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considered inactive by the enhancer assay (P-value <10−19, hyper-
geometric). These results are consistent with a model where eRNA
presence discriminates silent from functional TF binding.

eRNA origins colocalize with TF binding motif instances

Given thatmany TFs bind DNA in a sequence-specific manner, we
next sought to determine the precise spatial relationship between
instances of the TF-DNA motif model and eRNA transcription. To
this end, we measured the distance between genomic instances of
the TF motif model and eRNA origins in a K562 GRO-cap data set
(Core et al. 2014). We observed a stark colocalization of the motif
instance with the eRNA origin specifically in the TF-bound frac-
tion of eRNAs (Supplemental Fig. S7A), suggesting that the motif
sequence is present at the precise point of eRNA origination.
This led to the speculation that the genome-wide patterns of motif
sequence to eRNA co-occurrence could identify the set of active
TFs directly regulating eRNA transcription, even when ChIP data
are not available.

To investigate this hypothesis systematically requires a mea-
surement of the colocalization of motif instances with eRNA ori-

gins. With this in mind, we devised a simple statistic—the motif
displacement score (MD-score)—which computes the proportion
of TF sequence motif instances within an h-radius of eRNA origins
relative to a larger local H-radius (Fig. 2A). Similar to the average
length of a nucleosome free region (Yadon et al. 2010), we set
the h-radius based on the average estimated distance between
the forward and reverse strand transcript peaks at eRNA origins
(h = 150 bp; Supplemental Fig. S7B) and theH-radius as the average
length of chromatin marks associated with active regulatory loci
(H = 1500 bp; Supplemental Fig. S8). Consistent with the patterns
observed inChIP data, theMD-score is elevated in the bound set of
eRNAs relative to the not bound set (Supplemental Fig. S7C).

In order to expand our approach to include TFs for which no
ChIP-seq is available, we leveraged a hand-curated database of TF
binding motif models (HOCOMOCO, 641 motif models)
(Kulakovskiy et al. 2013) and measured the distribution of motif
instances proximal to K562 eRNA origins (Fig. 2B). Under a uni-
formnucleotide backgroundmodel, 32%of themotifmodels colo-
calized significantly with eRNAs (P-value <10−6). However, similar
to gene promoters and TF binding motifs, enhancers exhibit
heightened GC content (Fenouil et al. 2012; The ENCODE

Figure 2. Motif colocalization with eRNA origins varies by cell type. (A) An example locus of GRO-seq, the inferred eRNA origin, and computation of
“motif displacement” (MD) and the associated MD-score. (B) Each row is a TF motif model, and each column is a bin of a histogram (100) where heat
is proportional to the frequency of a motif instance at that distance from an eRNA origin. (C) A comparison between the expected MD-score for a motif
model (x-axis) and the observed MD-score in a K562 GRO-cap experiment (Core et al. 2014). Red and green dots indicate a P-value <10−6 above or below
expectation hypothesis tests, respectively. (D) MD-scores were computed and ranked under six nascent transcription data sets. (E) Each row corresponds to
a nascent data set, and each column relates tomotif frequency. TheseMDdistributions are shown for two demonstrative examples (JUND and CLOCK) and
the associated MD-scores, sorted by publication.
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Project Consortium 2012), which may artificially induce GC-rich
motif presence at eRNAorigins (Supplemental Fig. S9A). To control
for local sequence bias in our colocalizationmetric, we developed a
simulation-based method to perform empirical hypothesis testing
of the MD-score (Supplemental Fig. S9B). We observed that—even
in light of a significant nucleotide bias—27% of motif models re-
main significantly colocalized with eRNA origins in the K562
GRO-cap data set (Fig. 2C).

Interestingly, a subset of TFs display significantly lowered
MD-scores relative to expectation (green dots in Fig. 2C), suggest-
ing that in these cases, the instances of themotif model are signifi-
cantly depleted at eRNA origins. Consistent with this observation,
a previously published knockout of the Rev-Erb family of transcrip-
tional repressors (Nr1d1 and Nr1d2) resulted in the gain of eRNAs
(Lam et al. 2013). Taken together, these results suggest that repres-
sors suppress eRNA activity proximal to their DNA response
element.

Significant enrichment or depletion of a motif model near
eRNA origins likely indicates that the TF protein is present and
functionally active, as either an activator or repressor, respectively.
To validate thatMD-scores reflect TF activity,we first examined the
MD-scores of all motif models across a set of nascent transcription
data sets from six distinct cell types. Our analysis revealed
wide fluctuations in MD-scores of several motif models across
experiments (Fig. 2D). Importantly, we observed that the MD-
score associated with cell-type–specific TFs are elevated in their
known lineage of activity. For example, NANOG is elevated in
embryonic stem cells, consistent with its role in maintaining plu-
ripotency (Mitsui et al. 2003). Additionally, GATA1 is elevated
in K562 cells, consistent with its role in leukemia (Shimamoto
et al. 1995).

To further evaluate the MD-score, we predicted eRNA origins
in a large collection of publicly available nascent transcription data
sets (67 publications, 34 cell types and 205 treatments; Supple-
mental Table S3). Our compendia include a diverse collection of
nascent transcription protocols, cell types, sequencing depths,
and laboratory of origin. Across the compendium, the spatial rela-
tionship between eRNA transcription and motif sequence is ex-
ceedingly dynamic (Supplemental Fig. S10), as exemplified by
the JUND and CLOCK motif models (Fig. 2E). Given that we ob-
served a modest correlation between sequencing depth and
eRNA-identification (Supplemental Fig. S11), we next sought to
determine the extent to which the inferred MD-score simply re-
flected batch effects. To this end, we leveraged the fact that
many TFs play a pivotal role in cell fate and identity (Mitsui
et al. 2003). Indeed, dimensionality reduction of our MD-score
compendium (491 human nascent transcription experiments) re-
vealed statistical influences based predominantly on underlying
cell type (Supplemental Figs. S12, S13). Notably, 78% of motif
models in HOCOMOCO are significantly colocalized with eRNA
origins in at least one data set. While the experimental details
clearly influence the ability to infer specific eRNAs, the aggrega-
tion of genome-wide signal makes MD-scores relatively robust to
experimental variability. Importantly, key cell-type–specific TFs
show elevated MD-scores only in the relevant cell type (Fig. 2D),
suggesting that MD-scores quantify activity for broad classes of
TFs across cell types, despite differences in protocol, sequencing
depth, and/or laboratory of origin. Overall, these results indicate
thatMD-scores fluctuate across cell types and conditions in aman-
ner that suggests changes in TF activity.

As an alternative validation, we examined the transcription
patterns of the gene encoding the TF. For many TFs, we observed

higher transcription of the TFwhen theMD-score significantly dif-
fered from expectation (Supplemental Fig. S14A). Overall, 45% of
TFs show a correlation across all samples between the eRNA in-
ferredMD-score and the transcription level (FPKM) of the gene en-
coding the TF (Supplemental Fig. S14B), suggesting that some TFs
are themselves regulated at transcription. However, the observed
correlations were often weak and complex—typically neither line-
ar or monotonic—consistent with the observation that expression
levels of a gene are poorly correlatedwith protein levels (Vogel and
Marcotte 2012). Many TFs, including TP53 (Supplemental Fig.
S14C), are post-transcriptionally or post-translationally modified
to regulate their activity, and therefore, FPKM and MD-scores are
not expected to correlate (Oren 1999; Everett et al. 2010).

MD-scores quantify TF activity

To better investigate whether MD-scores reflect TF activity, we
turned to experiments where the activity of individual TFs is per-
turbed (Supplemental Table S4). We reasoned that alterations in
TF activity should be detected as significant changes in the MD-
score. In previous work, we utilized the drug Nutlin-3a to activate
TP53 in HCT116 cells (Allen et al. 2014). Here we observe a signifi-
cant increase in the colocalization of the TP53motif sequence and
eRNA origins following 1 h of Nutlin-3a exposure (ΔMD-score
0.17, P-value <10−33). In fact, of the 641 available TF-motifmodels,
only TP53 and TP63, which have nearly identical motif models,
displayed elevated MD-scores following Nutlin-3a treatment (P-
value <10−6) (Fig. 3A). A number of other studies have specifically
activated TFs, including tumor necrosis factor (TNF, also known as
TNF-alpha) activation of the NF-κB complex (NFKB1/NFKB2/REL/
RELA/RELB) (Luo et al. 2014) and estradiol activation of ESR1 (Hah
et al. 2013). In both cases, we observed dramatic shifts in the MD-
score for the TF(s) known to be activated by each stimulus (Fig. 3B,
C). Despite the fact that treatments involving Nutlin-3a, TNF, and
estradiol are known to modulate gene expression (Hah et al.
2013; Allen et al. 2014; Luo et al. 2014), we observed no detectable
differences in MD-scores when considering only promoter-associ-
ated bidirectional transcript sites (Supplemental Fig. S15). In all
three cases (Fig. 3A–C), TF activation resulted in the production
of new eRNAs that are uniquely enriched for the relevant motif
model, effectively elevating the TF’s MD-score (Supplemental
Fig. S16).

We next sought to evaluate the robustness of the ΔMD-score
approach for inferring altered TF activity. First, differential MD-
score analysis between biological replicates revealed no significant
shifts in motif sequence to eRNA colocalization, indicating that
our false-discovery rate is low (Supplemental Fig. S17). Second,
we randomly subsampled reads from the Nutlin-3a experiment
to generate data sets with considerably lower depth. With increas-
ingly less depth, fewer eRNAs are detected and the inferred MD-
score drops. However, the magnitude of the ΔMD-score remains
relatively consistent, indicating that the metric is largely robust
to sequencing depth (Supplemental Fig. S18). Finally, we varied
the h-radius from 0 to 1500 (the full H-radius) to assess the impact
of the h-radius on differential MD-score analysis.We found detect-
able differences in the MD-score across a broad range of h-radius
values, indicating that detection of significant ΔMD-score is robust
to the choice of h-radius (Supplemental Fig. S19). Collectively,
these results indicate that differential MD-score analysis is a robust
method of detecting changes in TF activity.

In each of the aforementioned perturbations, nascent tran-
scription was assessed at a ≤1-h time point. Therefore, we next
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sought to determine whether MD-scores could capture TF activity
across broader time frames. First, we observed that detectable
changes in TF activity are exceedingly rapid, as exemplified by fla-
vopiridol (a CDK9 inhibitor)-treated mouse embryonic cells
(Laitem et al. 2015), which display a dramatic and monotonic in-
crease in the MD-scores of TP53 and E4F1 (Fig. 3D). For a number
of TFs, MD-scores trend upward at 12.5 min and show significant
changes within 25 min of exposure. Interestingly, this result indi-
cates that eRNA activity proximal to key TFs increases at short time
points, even though flavopiridol is a general repressor of transcrip-
tion.Mouse T cells treated for a longer time course with Kdo2-lipid
A (a highly specific TLR4 agonist) (Kaikkonen et al. 2013) showed
dynamic and time-ordered shifts inMD-scores for a number of key
TFs (Fig. 3E), including interferon (IRF7) and STAT2. Furthermore,
YBOX1 decreases in colocalization (reducedMD-score), consistent
with its known role as a transcriptional repressor that increases in
expression after KLA exposure (Liu et al. 2009). Collectively, these
results indicate that profiles of eRNA transcription—when com-
bined withmotif models—identify shifts in TF activity in response
to perturbation.

Discussion

We leveraged the observation that eRNAs mark the functional ac-
tivity of TFs to develop a simple statistic that reflects a TF’s func-
tional activity. Importantly, we do not assign TFs to individual
enhancers, because most eRNAs have numerous motif instances
proximal to their origin. Our approach does not determine which
of these possibilities is critical to the regulation of the eRNA.
Instead, our statistic, theMD-score,measures the global colocaliza-
tion of eRNAswith a TFmotifmodel in order to capture changes in
TF activity after diverse stimuli.

While the biological functions of eRNAs remain largely un-
known, eRNAsclearly represent apowerful readout for TF function-
al activity. Previouswork demonstrated that the presence of eRNAs
correlates with active regulatory regions and, consequently, a sub-
set of TF binding sites (Danko et al. 2015). Separately, it has been
noted that some binding sites are apparently “silent” with respect
to transcription (Cusanovich et al. 2014) or reflect artifacts of
ChIP (Teytelman et al. 2013; Worsley Hunt and Wasserman
2014). Therefore, to determine whether eRNAs mark sites of TF

Figure 3. MD-scores predict TF activity. (A, top) The MD distribution, MD-score, and the number of motifs within 1.5 kb of any eRNA origin before and
after stimulation with Nutlin-3a (e.g., Nutlin) on TP53 (Allen et al. 2014), the TF known to be activated. (Bottom) For all motif models (each dot), the change
in MD-score (ΔM DS) following perturbation (y-axis) relative to the number of motifs within 1.5 kb of any eRNA origin (x-axis). Red points indicate signifi-
cantly increased and/or decreased MD-scores, respectively (P-value <10−6). Similar analysis for TNF activation of the NF-κB complex (B) (Luo et al. 2014)
and estradiol activation of estrogen receptor (ESR1; C) (Hah et al. 2013). (D) A time series data set following treatment with flavopiridol (Jonkers et al. 2014).
The y-axis indicates the MD-score change relative to time point zero. Blue dots indicate a MD-score difference <10−6. A darker shaded line indicates a time
trajectory with at least one significantMD-score. (E) Time series data set following treatment with Kdo2-lipid A (KLA) where each time point is normalized to
time-matched DMSO (Kaikkonen et al. 2014). Therefore, the y-axis indicates MD-score difference relative to the time point–matched DMSO sample. NCBI
Sequence Read Archive (SRA) SRR numbers of these comparisons are outlined in Supplemental Table S4.
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activity, we leveraged binding events across cell lines that differed
only in their eRNA activity. Our results indicate that TF binding
sites that correspond to eRNAsynthesis aremore likely to positively
affect nearby gene expression than those lacking eRNA transcrip-
tion. Undoubtedly, assigning enhancers to the nearest gene is
not optimal, asmany enhancers are known to regulate target genes
at great distances (Yao et al. 2015). However, incorrect enhancer to
gene assignments would only increase noise within our compari-
son. Thus, given the instability and short half-lives of eRNAs (Li
et al. 2016), their presencewithin a cell reflects ongoingTF activity.

Consequently, we directly assess TF activity frommotif mod-
els and nascent transcription.We observe thatmanymotif models
show significantly enriched colocalization with eRNA origins be-
yond expectation, suggesting that these TFs are both present and
functionally active in regulation. As the detection of eRNAs is de-
pendent on sequencing depth, future TF-activity inference meth-
ods should consider both eRNA-motif colocalization as well as
read depth. Even still, we show that TF activity is a strong predictor
of cell type, even across distinct protocols, sequencing depths, and
laboratory of origin. Hence, our approach has utility in identifying
potentially diagnostic signatures of TF activity.

Most importantly, MD-scores can be used to identify when
the activity of a TF differs between two data sets, due to either
an experimental stimulus or differences in cell type. Our metric
utilizes the genome-wide patterns of TFmotif sequence colocaliza-
tion with eRNA origins to identify changes in TF activity, regard-
less of whether the TF functions as an activator or repressor.
Implicitly, changes in MD-score must thus reflect the gain and
loss of eRNAs between two conditions, suggesting a direct relation-
ship between functional TF binding and eRNA transcription initi-
ation. However, we and others have observed changes in eRNA
transcription levels after stimulus (Hah et al. 2013; Allen et al.
2014), suggesting that our metric could be improved by including
changes in the transcription levels of pre-existing eRNAs.

Notably, our differential MD-score approach has some limita-
tions. First, as described, ourmodel considers the influence of each
TF on transcription activity independently, yet TFs are often
known to work cooperative or in combination (Spitz and
Furlong 2012). If two (or more) TFs collaborate to induce eRNA ac-
tivity and each motif model is enriched over expectation, both
would be detected. However, if only the combination is enriched,
we would not detect it in our current framework. Second, some
families of TFs have similar recognition motifs, making distin-
guishing between themdifficult. In a few cases, one ormore family
members is not transcribed. For example, upon stimulation with
Nutlin-3a, both TP53 and TP63 show significant increases in
MD-score (Fig. 3A), but in this cell type (HCT116), only TP53 is
transcribed. Thus in this case, we can confidently assert that
Nutlin-3a activates TP53. However, in most cases, we will not be
able to distinguish family members apart. Finally, we focus here
on colocalization of TF motif instances with eRNAs. However, a
small set of TFs preferentially bind to promoters (The ENCODE
Project Consortium 2012). For these factors, stronger signals may
be obtained by computing MD-scores from all sites of polymerase
initiation (promoters and enhancers).

In conclusion, we showed that addition of diverse chemical
stimuli to cells resulted in activation or deactivation of specific
TFs. It is compelling to think that had we not known the nature
of each stimulus, we could have inferred their effects from the
unique eRNA profile obtained immediately after addition of the
compound. As methods for measuring eRNA production become
simpler and cheaper, our approach could eventually serve as a

screen capable of discriminating between the direct mechanistic
impact of closely related compounds and, hence, serve as another
layer of information about the effects of a drug. Such data could
help to define previously poorly understood molecular mecha-
nisms underlying a drug’s activity.

Methods

Public data sets

We examine the relationship (association and/or overlap) be-
tween genomic features such as TF binding peaks, chromatin
modifications, DNA sequence, TF binding motif models, and
eRNA presence. Data for all features were obtained from publicly
available sources and compared relative to a human and mouse
genome versions hg19 and mm10, respectively. Human and
mouse nascent transcription data were obtained from the NCBI
Gene Expression Ombnibus (Supplemental Table S3). ENCODE
peak data were obtained from https://www.encodeproject.org/
matrix/?type=Experiment. Most data were provided relative to
hg19, but when necessary, ENCODE files were converted to
hg19 via the Python LiftOver package. Accession numbers for
all ENCODE data utilized are provided in Supplemental Table
S1. Motif models were obtained from the HOCOMOCO v. 10
(Kulakovskiy et al. 2013, 2016) database and scanned against
the genome. For complete details on the processing and remap-
ping of these data sets, refer to the Supplemental Methods.

Tfit modification and parameters

In prior work (Azofeifa and Dowell 2017), we leveraged the known
behavior of RNAP to identify individual transcripts within nascent
transcription data. Our model (Azofeifa and Dowell 2017), known
as transcription fit (Tfit), infers the precise point of RNA polymer-
ase loading, e.g., the origin point of transcription. Formally, this
origin point (µ) represents the expected value of a Gaussian (nor-
mal) random variable, discussed in great detail in our previous
publication (Azofeifa and Dowell 2017).

For analysis of numerous nascent data sets, here we modify
our previous approach in two ways. First, to rapidly identify all
sites of transcription initiation genome-wide, we compute a likeli-
hood ratio statistic between a fully specified exponentially modi-
fied Gaussian (Equation 1, the loading/initiation/pausing phase
of our earlier Tfit model) (Azofeifa and Dowell 2017) against a uni-
form distribution backgroundmodel (Equation 2) at some genome
interval [a, b]. We hereafter refer to this approach as template
matching. Second, we amend our earlier estimate of the loading
step of polymerase activity to permit variable distances between
the forward and reverse strand transcripts, hereafter referred to as
a polymerase footprint. For completeness, we now describe
both modifications in full detail below. We then validated the
modified Tfit by comparison of predictions to histone marks
and TF binding data (for full description of validation, see
Supplemental Methods).

Template matching

The loading/initiation/pausing portion of our earlier model, fully
specified in Azofeifa (Azofeifa and Dowell 2017), describes the ini-
tial activity of RNAP and captures initiating transcription, which is
often bidirectional, genome-wide. Briefly, our model assumes
RNAP is first recruited and binds to some genomic coordinate X
as a Gaussian-distributed random variable with parameters µ, σ2,
where µ might represent the typical loading position (e.g., origin
of any resulting transcript either TSS or enhancer locus) and σ2

the amount of error in recruitment to µ. Upon recruitment,
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RNAP selects and binds to either the forward or reverse strand,
which we characterize as a Bernoulli random variable S with pa-
rameter π. Following loading and preinitiation, RNAP immediately
escapes the promoter and transcribes a short distance, Y. We as-
sume that the initiation distance is distributed as an exponential
random variable with rate parameter λ. In this way, the final geno-
mic position Z of RNAP is a sum of two independent random var-
iables (X + SY), where the density function (resulting from the
convolution/cross-correlation) is given in Equation 1. Note that,
in keeping with traditional notation, we let uppercase, non-
Greek alphabet letters represent randomvariables and the associat-
ed lowercase letters refer to instances or observations of the sto-
chastic process.

h(z, s;m,s,l,p) =lf
z− m

s

( )
R ls− s

z− m

s

( )
1(s)

1(s) = p : s = +1

1− p : s = −1

{
.

(1)

Above, φ(.) refers to the standard normal density function and R(.)
refers to the Mill’s ratio.

In contrast, reads obtained outside of initiation regions are
captured by a uniform distribution (Equation 2).

u(z; a, b) = p̂

b− a
, (2)

where p̂ refers to themaximum likelihood estimator for the strand
bias (Equation 3).

p̂ =
∑N
i=1

I(si . 0)/N, (3)

where I(.) is an indicator function. Finally, the (log-)likelihood of
the exponentially modified Gaussian (LLemg) and uniform (Lu) dis-
tribution computed at a genomic interval [a,b] using aligned read
counts is given in Equation 4.

LLemg =
∑b
i=a

log h(zi, si; m̂, ŝ, 1̂/l, p̂),

LLu =
∑b
i=a

I(si . 0) log p̂

b− a
+ I(si , 0) log 1− p̂

b− a
,

LLR = LLemg − LLu.

(4)

Here, m̂ refers to the center of the window. Based on our
previous study (Azofeifa and Dowell 2017), we set
{ŝ, 1̂/l, ŵ, p̂} = {34.2,391.7,0.358,0.501}.

The algorithm is a simple sliding window of LLR computa-
tions. Overlapping (1-bp) regions of interest (LLR > τ) are merged.
In every study profiled for bidirectional transcription by Tfit, τ =
103. More information on running and using Tfit output is avail-
able at https://biof-git.colorado.edu/dowelllab/Tfit.

EM algorithm and bidirectional origin estimation

On its own, however, the template matching module of Tfit does
not provide an exact estimate over Θ (the parameters associated
with a single loading position). To perform optimization over Θ
and specifically μ (the origin of bidirectional transcription), we de-
rived the expectation maximization algorithm (outlined in detail
in our previous publication) (Azofeifa and Dowell 2017) to opti-
mize the likelihood function of Equation 4. In brief, we used the
following EM-specific parameters at each loci: The number of ran-
dom reinitializations per loci was set to 64, the threshold at which
the EM was said to converge, |llt− llt+1|, was set to 10−5. Finally for

computational tractability, the EM algorithm halted after maxi-
mum of 5000 iterations.

At each window predicted by the sliding window algo-
rithm, we perform inference over μ, σ, λ, and π by the EM algo-
rithm. Details of the derivation, model selection, and algorithm
design can be found in our previous report (Azofeifa and Dowell
2017).

Footprint estimation

Importantly, our previous effort at parameter estimation of the fi-
nite mixture model assumed that RNAP behaved as a point source
(Azofeifa and Dowell 2017). Consequently, we could not incorpo-
rate a systematic approach to estimate observed gaps between the
forward and reverse strand peaks, which deviate more than could
be explained by an exponentiallymodified Gaussian density func-
tion. Here, we amend our earlier model only slightly to estimate
this behavior. We call the distance between the forward and re-
verse strand peaks, the footprint of RNAP or fp. In brief, fp amounts
to adding or removing a constant to zi, the genomic position of
RNAP after loading and initiation. Assuming that fp > 0 then the
above equations remain valid by a simple transformation to zi:

zi := zi − si · fp.
As in our previous effort (Azofeifa and Dowell 2017), we insert this
new parameter into the conditional expectation of the latent var-
iables given the observed random variables and perform a gradient
step. This allows us to optimize for fp (Equation 5):

f̂pk :=
1
rk

∑N
i=1

(si(zi − m) − E[Y|zi, si; ug ]) · rki . (5)

The interested reader should refer to our previous paper (Azofeifa
and Dowell 2017) where each parameter is explained fully; deriva-
tion of the EMalgorithm and fitting of the Tfitmodel are discussed
heavily. For complete clarity, the full expression of the expectation
operators is given by Equation 6:

E[Y|gi; ut ] = si(z− m) − ls2 + s

R(ls− si(zi − m)/ s) ,

rki = p(k|gi; ugk) =
wk · p(gi; ugk)∑
k[K wk · p(gi; ugk)

,

rk =
∑N
i=1

rki .

(6)

TF binding site prediction via eRNA presence

We compute the receiver operating characteristic (ROC) curve to
quantify the ability of bidirectional transcription to predict TF
ChIP binding. ENCODE-called peaks within a TF’s ChIP-seq
data are considered truth, and randomly selected regions that
do not overlap any previously seen ChIP-seq peak are considered
a gold standard for noise. For each peak (truth or noise), a bidirec-
tional model is fit using the expectation maximization algo-
rithm. A Bayesian information criteria (BIC) score was
calculated between the exponentially modified Gaussian mixture
model and a simple uniform distribution with support across the
entire peak. We record a true positive if the BIC score exceeds a
threshold τ and the peak was one of the ENCODE peak calls.
We record a false positive if the BIC score exceeds the threshold
(τ) and the peak is a random noise interval. We vary the thresh-
old τ to obtain the ROC curve of Figure 1 and compute an area
under the curve (AUC).
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Computation of bimodality

To assess whether the distribution of ChIP peaks or TF bindingmo-
tif sequences around an eRNA origin is bimodal, we developed and
employed a pairwise distribution test.We define the ΔBIC score (in
Equation 8) to be the difference in BIC scores between a single
Laplace-uniform mixture centered at zero (unimodal) and a two
component Laplace-uniform mixture with displacement away
from 0, i.e., c (bimodal). The density function of a Laplace distribu-
tionwith parameters (c,b) is provided in Equation 7, andweuse the
formulation for the uniform distribution of Equation 2.

p(d; c, b) = 1
2b

exp − |d − c|
b

. (7)

Here D refers to the set of distances, di∈ [− 1500, 1500], either the
center of the TF binding peaks obtained from MACS (Zhang et al.
2008) or the center of TF binding motif sequence from the PSSM
scanner relative to eRNAorigin. If ΔBIC≫ 0, we assume bimodality
in TF peak location relative to the eRNA origin:

L0(D;Q∗) =
∏N
i=1

1
3000

,

L1(D;Q∗) =
∏N
i=1

w
1
2b

exp − |di|
b

{ }
+ 1− w

3000
,

L2(D;Q∗) =
∏N
i=1

w
4b

exp − |di − c|
b

{ }
+ w
4b

exp − |di + m|
b

{ }
+ 1−w

3000
.

DBIC : = −2(logL(D)1 − logL(D)2) + k log (|D|).
(8)

Θ∗ is optimized again by the ExpectationMaximization algorithm
where the update rules are given in Equation 9:

dt+1 = 1
2(ra + rb)

∑n
i=1

rai di +
∑n
i=1

rai di

( )
,

bt+1 = 1
2(ra + rb)

∑n
i=1

rai |di| +
∑n
i=1

rbi |di|
( )

,

wt+1 = ra + rb

r
,

rai = p(di; c, b)
p(di; c, b) + p(di;−c, b) + u(di;−1500,1500) ,

rbi = p(di;−c, b)
p(di; c, b) + p(di;−c, b) + u(di;−1500,1500) ,

rui = 1− rai + rbi rx =
∑N
i=1

rxi r = ra + rb + ru.

(9)

We refer to a signal as bimodal (i.e., not unimodal) when ΔBIC >
500, estimated from the distribution in Supplemental Figure S5D.

MD-score hypothesis testing

The MD-score relates the proportion of significant motif instances
within some window 2h divided by the total number of motif in-
stances against some largerwindow2H centered at all bidirectional
origin events. It is calculated on a per PWM binding model basis.

Let Xj = {x1,x2,…} be the set of bidirectional origin locations
genome-wide for some experiment j. Let Yi = {y1,y2,…} be the set
of all significant motif instances for some TF-DNA binding motif
model i genome-wide, which is static as it only depends on the ge-
nome build of interest. Furthermore, because recent human ge-
nome builds vary little at the sequence level, the metric is not

expected to change significantly between hg19 versus GRCh38.
Therefore, the set of all MD-scores is calculated by Equation 10:

g(Xj,Yi; a) =
∑
x[Xj

∑
y[Yi

d(|x− y| , a),

mdj,i = g(Xj,Yi;h)/g(Xj,Yi;H),
mdj,i [[0,1) if h , H.

(10)

Here, δ(.) is a simple indicator function that returns one if the con-
dition (.) evaluates true and zero if false. The double sum, i.e., g(a),
is naively O(|X||Y|); however, data structures like interval trees re-
duce time to O(|X|log |Y|).

To be clear, there exist 641 TF-DNA binding models in the
HOCOMOCO database, and therefore, 641 MD-scores exist for
some experiment j. Let mdi be the MD-score computed for some
TF-DNA binding motif model. Therefore, let MDj = {md1, md2, …,
md641} be the vector of all MD-scores for some data set j.

MD-score significance under stationary model

If yi and xi are uniformly distributed throughout the genome, i.e.,
following a homogeneous Poisson point process, then g(h) is dis-
tributed as a binomial distribution with parameters p,N
(Equation 11):

g(h) �B(n, p),

B(k;n, p) = n

k

( )
( p)k(1− p)n−k,

where n = G(H) and p = h/H.

(11)

In cases where g(H)≫ 0, the binomial is well approximated by a
Gaussian distribution, and hypothesis testing under some α level
can proceed in the typical fashion. In brief, significantly increased
MD-scores (by a binomial test) is diagnostic of heightened motif
frequency surrounding eRNA origins.

MD-score significance under a nonstationary background model

Motif instances, however, are not distributed uniformly through-
out the genome. Specifically, particular regions, such as gene pro-
moters of the genome, are known to exhibit significance sequence
bias. Indeed, the localized GC content is highly nonstationary at
eRNAs (Supplemental Fig. S9A). Consequently, a binomial test,
which assumes a homogeneous Poisson process of motif locations
genome-wide, may be a too liberal null model (e.g., the wrong
background assumption).

To control for this nonstationarity, we propose a simulation-
based method to compute P-values for MD-scores under an empir-
ical CDF, i.e., a localized backgroundmodel. Let p be a 4x2Hmatrix
where each column corresponds to a position from an origin and
each row corresponds to a probability distribution over the DNA
alphabet {A,C,G,T}. To be clear, p0,0 corresponds to the probability
of an A at position −H from any bidirectional origin, similarly
p2,1500 corresponds to the probability that a G occurs at exactly
the point of the bidirectional origin.

Therefore, the simulation-based method of the background
model is simple. Given an experiment ofXj bidirectional origin lo-
cations, we simulate |Xj| sequences following this nonstationary
GC content bias. We then iterate over all PWM models and look
for significant motif hits. We then compute summary statistics
about the displacement of the motif sequence relative to the set
of synthetic sequences, i.e., MD = {md1, md2, …, md641}. It should
be noted that, in this data set, any motif model match is by com-
plete chance alone. We iterate this process 10,000 times to com-
pute a random distribution over mdi, i.e., mdi

���
, and thus we can
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assess the probability of our observed (i.e., from real data) mdi rel-
ative to our empirically simulated mdi

���
. Example simulations are

shown in Supplemental Figure S9B.

Cell type and TF enrichment analysis

This section serves to outline the rational for determining if
heightened MD-scores correlate with a specific cell type category.
More traditional approaches such as a one-way ANOVA test
(MD-scores computed from similar cell types are grouped and
within group variance is assessed via a F-distribution) will not ad-
equately account for MD-scores with little support (i.e., motif hits
that overlap very few eRNAs). To overcome this, we propose a rel-
atively straightforward method that relies on performing hypoth-
esis testing on all pairwise experimental comparisons.

Let j and k be two nascent transcription data sets of interest,
then mdsj,i and mdsk,i refer to MD-scores for some TF-motif model
(i) for whichwe can performhypothesis testing over as outlined in
MD-Score Hypothesis Testing. If we let α be the threshold at which
we considermdsj,i−mdsk,i to significantly increase, thenwe expect
on average α ·N− 1 false positiveswhen considering a single exper-
iment against the rest of the corpus of size N.

Put another way, if we let the random variable Sj,i refer to the
numberof timesweconsidermdsj,i−mdsk,i to significantly increase
in a data set comparison, then Sj,i is binomial distributed with pa-
rametersN− 1 and α (Equation 12), assuming that there is not a re-
lationship between the motif model i and the experiment j:

S j,i =
∑N
k=1

I( p(mds j,i . mdsk,i) , a). (12)

Inpracticewe setα to 10−6, and I refers to an indicator function that
returns one in the casewhere the statement evaluates to truth, oth-
erwise zero.

Naively, we could now ask for all the data sets annotated as
some cell type ct and then perform hypothesis testing on Sct (the
sum of Sj,i’s where experiment j belongs to the ct cell type set).
Importantly, we only consider data set pairs for which i and j
belong to different cell type sets. Unfortunately, a single experi-
ment within the cell type set might show strong association
with a TF (i.e., 90% of the N− 1 comparisons significantly deviate
from zero) where the rest of the cell types show small numbers of
significant deviations. By a binomial test, this is unlikely—even
when considering the expansion induced by the cell type set—
but intuitively does not fit into our notion of cell type association.

To this end, we define a final random variable Act,i to be the
number of times motif model i is significantly enriched for a
data set j and that data set j belongs to some cell type (Equation 13):

A =
∑N
j=1

p(S j,i . S) , 10−6I( j [ CT), (13)

where CT refers to the set of experiments that are annotated as cell
type ct. From there, it is easy to assess A across cell types and motif
models under a contingency model using Fisher’s exact test.

Transcription of the TF gene when the MD-score is elevated or

depleted

To evaluate whether significantly altered (elevated or depleted)
MD-scores reflect TF activity, we first calculate the nascent tran-
scription levels over the gene encoding the TF. To this end, all
RefSeq genes were downloaded from hg19. Samples with fewer
than 5000 Tfit bidirectional regions were removed from subse-
quent consideration. FPKM was calculated for each gene in each
human nascent transcription sample (n = 491) over the body of

the gene, defined here as 1 kb to the end of the gene. For all TFs
in HOCOMOCO >1 kb and with a RefSeq name (n = 635 TFs),
the maximum FPKM of all annotated isoforms was utilized. All
TF MD-scores were compared to expectation and classified on a
per sample basis. Significant deviations from expectation were de-
termined as passing both the stationary and nonstationary test (P-
value <10−6). TFs with significant deviation were subsequently la-
beled as elevated if they had aminimumMD-score of 0.1 and were
above expectation or labeled as depleted if they had a maximum
MD-score of 0.1 and below expectation. To identify samples in
which the TF is at expectation, we labeled a third set as at-expecta-
tion if they pass the stationary and nonstationary test (P-value
<10−2). For the box plots of Supplemental Figure S14A, we exclud-
ed samples with fewer than 10 significant (depleted or elevated) or
at-expectation samples. Across all samples, to avoid zero FPKM the
minimum nonzero FPKM was utilized.

We next calculated the Spearman’s rank correlation coeffi-
cient and P-value across all samples (n = 491; scipy v0.17.1) be-
tween MD-scores and the FPKM of the gene encoding the TF
(Supplemental Fig. S14B). When shuffling the FPKMs across sam-
ples, we expect an average of 8.4 TFs to show correlation (permu-
tation testing 100 times, standard deviation 2.4 TFs). For all
eRNAs (MD-score from nonpromoter associated bidirectionals),
286 of 635 TFs show a correlation (P-value <0.01). For all bidirec-
tionals (includes promoters), the same P-value cutoff finds
441 of 635 TFs with correlation (expectation 16.5, standard devia-
tion 3.8).

We next examined regions evaluated by a functional assay,
namely, CapStarr-seq (Vanhille et al. 2015), for their co-occurance
with eRNA origins. In CapStarr-seq, they utilized mouse 3T3 cells,
selected TF-bound regions (by ChIP), and determined whether the
bound regions functioned as an enhancer using a GFP expression
assay. Identified regions were moved to mm10 coordinates using
LiftOver (Hinrichs et al. 2006). For comparison to nascent tran-
scription, Tfit-called bidirectionals (both eRNA and promoter ori-
gins) for mouse samples (SRR1233867, SRR1233868, SRR1233869,
SRR1233870, SRR1233871, SRR1233872, SRR1233873,
SRR1233874, SRR1233875, SRR1233876) from the 3T3 cell lines
were combined (Step et al. 2014). While 35.5% of regions classi-
fied as a strong enhancer (n = 186) by CapStarr-seq contained a
bidirectional origin, only 7.9% of regions classified inactive (n =
4406) had a bidirectional origin. Generally, bidirectionals within
strong enhancers (by CapStarr-seq) were identified by Tfit in mul-
tiple nascent transcription replicates, while bidirectionals within
inactive regions were only in one nascent transcription replicate.
Overall, regions defined as strong enhancers were four times
more likely to contain an eRNA origin than regions defined as in-
active enhancers.

MD-score significance between experiments

The MD-score constitutes a proportion, and as long as h is upper-
bounded byH, thenmdj,iwill always exist within the semi-open in-
terval [0,1). An important question is whether mdj,i has signifi-
cantly shifted between two experiments: j,k as a function of Xj

and Xk. This analysis is straightforward under the two proportion
z-test. Specifically, we are testing the null and alternative hypoth-
esis tests in Equation 14:

H0 : mdj,i = mdk,i,

H1 : mdj,i =mdk,i.
(14)

We can then compute the pooled sample proportion (pi) and
standard error (SE) as shown in Equation 15. Therefore, our test sta-
tistic z (Equation 16) is normally distributed with mean 0 and
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variance 1:

pi =
(mdj,i · g(Xj,Yi;H) +mdk,i · g(Xk,Yi;H))

g(Xj,Yi;H) + g(Xk,Yi;H) ,

SE = p(1− p) · (1/g(Xj,Yi;H) + 1/g(Xk,Yi;H)),
(15)

z = mdj,i −mdk,i���
SE

√ � N(0,1). (16)

Computation of the P-value can be assessed in the normal fashion
under some α level. In all comparisons, we utilizemultiple hypoth-
esis correction outlined by Storey et al. (2007).
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Chapter 3

Transcription Factor Enrichment Analysis

3.1 Preamble

While the MD-Score was a big step not only as a method development paper but also as

an eRNA characterization paper, there were several aspects of this technique that we sought to

improve. First, the MD-Score relied on a binary metric for measuring TF activity. Across two

conditions, the MD-Score created histograms of motif overlaps to detected bidirectionals and quan-

tified separately these histograms for each condition. This meant that the MD-Score was blind to

events where the transcriptional levels of bidirectionals were changing. Second, the MD-Score had

no way of combining replicates which significantly limited its statistical power. We addressed both

these issues by designing a metric with inspiration from the popular GSEA technique for measuring

enrichment of gene sets.

3.1.1 Significance

As discussed in Chapter 2, measuring TF activity is a global readout of cellular function and

current experimental techniques for measuring TF activity are low-throughput. In the previous

chapter, I discussed the development of the MD-Score as a computational approach for measur-

ing TF activity from sites of bidirectional transcription overlapped with TF motifs. Because the

MD-Score used a binary metric and did not incorporate replicates, we developed Transcription

Factor Enrichment Analysis (TFEA) based on the popular gene set enrichment analysis (GSEA).

In addition to solving the outstanding issues with the MD-Score approach, TFEA also eliminated
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the need for some thresholds and is essentially an asymmetry pattern recognizer. In contrast to

the MD-Score, TFEA requires a set of conditions in which to perform its analysis whereas the

MD-Score could detect TF activity in a single dataset.

While built originally for nascent transcription, TFEA has proven to be more broadly ap-

plicable. TFEA essentially is a motif enrichment strategy that balances both relative changes in

transcription (or whatever the data measures) and position of the motif from a designated point of

interest. Briefly, TFEA works by ranking regions of interest (ROI) by some metric (usually read

depth), scanning for motifs over ROI, calculating an enrichment curve based on the motif positions

relative to ROI centers, and quantifying the area between this curve and random expectation (the

diagonal). This value is called the E-Score and represents the percentage enrichment of a TF mo-

tif in input ROIs across two conditions. Significance of the E-Score is calculated empirically, by

shuffling the rank order of ROI and recomputing a simulated E-Score 1000 times.

In the work that follows, TFEA is first compared to the MD-Score and to the differential

MD-Score (MDD-Score). The MDD-Score is a method developed by Margaret Gruca that sought

to incorporate differential signal into the MD-Score approach. TFEA is then benchmarked with

AME, a motif enrichment algorithm developed as part of the MEME suite. Finally, we use TFEA

to analyze publicly available time series datasets and show that TFEA can temporally unravel

complex regulatory networks. Additionally, we show that TFEA works on datasets other than

nascent such as CAGE, H3K27ac ChIP, EP300 ChIP, DNAse-Seq, and ATAC-Seq.

The current TFEA manuscript is under revision at Nature Communications but available as

a preprint on BioRxiv (doi: https://doi.org/10.1101/2020.01.25.919738).

3.1.2 Contributions

The TFEA project was a collaborative effort over the course of several years. The majority

of this work, which included method development and benchmarking was done by myself with Dr.

Stanley contributing key aspects to method development, including muMerge. Rutendo Sigauke

performed initial testing and validation of the method, Zachary Maas assisted with data download
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and husbandry, and Jessica Westfall designed figure layouts and presentation.

What follows is the TFEA manuscript as it was uploaded to BioRxiv.
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1 Abstract
Detecting differential activation of transcription factors (TFs) in response to
perturbation provides insight into cellular processes. Transcription Factor En-
richment Analysis (TFEA) is a robust and reliable computational method that
detects differential activity of hundreds of TFs given any set of perturbation
data. TFEA draws inspiration from GSEA and detects positional motif enrich-
ment within a list of ranked regions of interest (ROIs). As ROIs are typically
inferred from the data, we also introduce muMerge, a statistically principled
method of generating a consensus list of ROIs from multiple replicates and
conditions. TFEA is broadly applicable to data that informs on transcriptional
regulation including nascent (eg. PRO-Seq), CAGE, ChIP-Seq, and accessibility
(e.g. ATAC-Seq). TFEA not only identifies the key regulators responding to a
perturbation, but also temporally unravels regulatory networks with time series
data. Consequently, TFEA serves as a hypothesis-generating tool that provides
an easy, rigorous, and cost-effective means to broadly assess TF activity yielding
new biological insights.
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2 Introduction
Transcription factors (TFs) are DNA-binding proteins that regulate transcription.
When a cell is challenged by a change in the environment, it responds by altering
the activity of one or more TFs. TFs, through transcriptional changes, are
then responsible for altering cellular function and ultimately deciding cell fate.
Because of their importance in global cellular programs, measuring differential
TF activity between two conditions is a readout of high-level cellular biology
and provides critical insight when details of the involved cellular processes are
not known.

Experimental methods for measuring TF activity have largely focused on
measuring protein-DNA binding, typically by chromatin immunoprecipitation
(ChIP), resulting in high quality sequence recognition motifs for many TFs[19, 38].
Yet, not all binding sites lead to altered transcription activity[61, 55, 18]. Con-
sequently, many of the approaches to inferring regulation by TFs combine ChIP
data or motif hits with measures of gene expression[10, 28]. Relying on gene
expression data, however, limits the effectiveness of these approaches. Gene
expression assays, such as RNA-seq, are only indirect measures on actual tran-
scription. RNA-seq is a steady state measure of RNA and reflects a combination
of transcription and degradation[26, 57, 22]. Furthermore, the steady state nature
of RNA-seq limits the response dynamics of the assay[25, 37, 42, 1, 36], as both
newly created and long lived RNAs contribute to RNA measurements[49, 47].
Therefore, directly assaying transcription initiation improves on both the po-
sitional and temporal resolution when quantifying the activity of regulatory
sites.

A large number of high throughput assays either directly or indirectly assay
transcription initiation. Nascent transcription assays[16, 35] directly measure
bona fide transcription, prior to RNA processing. Cap associated approaches, such
as CAGE and GRO-CAP, target the 5′ cap of transcripts[4, 15, 58]. Transcription
arises from a subset of nucleosome free regions, therefore chromatin accessibility
data indirectly informs on the locations of transcription initiation. Likewise,
some histone marks have been associated with actively transcribed regions, such
as H3K27ac and H3K4me1/3 [11]. In principle, differential signals from these
assays inform on the underlying mechanistic activity of TFs[6].

With differential regulatory data, the objective is to infer which transcription
factors are causally responsible for the observed changes. With high quality
motifs now residing in numerous databases[34, 43, 38], these catalogs can be
leveraged to resolve the concurrent activity of many TFs. Historically, detecting
motif enrichment in this way relied on sequences being classified into either signal
or background and then calculating motif enrichment in signal sequences relative
to background[11, 14]. More sophisticated approaches can take advantage of two
additional factors: 1) positional information — where the motif is located relative
to a region of interest[8, 6] and 2) differential information — the amount of
change occurring within that region of interest[45, 12]. Relatively few techniques
encode both types of information[39, 52, 24] and these currently provide no
easily accessible software package or web-based application.
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Our method, which we refer to as transcription factor enrichment analysis
(TFEA) draws inspiration from the popular gene set enrichment analysis (GSEA)
algorithm[56]. TFEA improves on our previous position based approach[6]
and shows performance comparable to the state of the art motif enrichment
approaches. Additionally, TFEA can be applied to a number of regulatory data
types including PRO-seq, CAGE, DNAse-seq and ChIP-seq. Finally, TFEA is
fast, computationally inexpensive, and designed with the user in mind, as we
provide an easy to use web interface (https://tfea.colorado.edu), a command-line
interface, and an importable Python 3 package. TFEA has the potential to
become a transformative tool by providing easy downstream analysis aimed at
distinguishing temporal and mechanistic details of complex regulatory networks.

3 Results
3.1 Overview
Conceptually, when a TF is active, it binds to a set of positions within the genome
and alters transcription nearby, both at promoters and enhancers. Importantly,
this process can both give rise to new transcripts and alter the levels of existing
transcripts. Nascent transcription assays show that when a TF is activated,
transcripts arise immediately proximal to the corresponding TF motif[1, 6]. In
this work we introduce TFEA, which quantifies positional enrichment of TF
motifs across an ordered list of regions (Figure 1). The key input into TFEA is a
ranked list of regions of interest (ROIs) that typically are obtained independently
from each replicate dataset but can also be a list of annotated regions, such as
known promoters.

3.2 muMerge: Combining genomic features from multiple
samples into consensus regions of interest

A key challenge in defining a set of consensus ROIs is retaining positional
precision when combining region estimates that originate from different samples
(replicates and conditions). To this end, we developed a statistically principled
method of performing this combination called muMerge (See Supp. Fig. 3 and
online method section 4.1.1 for details). In order to demonstrate the efficacy of
muMerge, we compare its performance to two common methods for combining
regions across multiple samples—merging all samples (e.g. with bedtools merge)
and intersecting all samples (e.g. with bedtools interesect). We performed two
tests using simulated data (Supp. Fig.4). For each replicate, we performed
10,000 simulations of sample regions for a single loci, and calculated the average
performance.

Using the simulated regions, we first evaluate the methods’ precision as the
number of replicates increases. In Fig. 2a, we observe that as the number of
replicates increases muMerge converges on the correct theoretical loci position
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(µ) more quickly than the other two methods, while still maintaining the correct
width for the region (Fig.2b).

The second test we performed sought to evaluate the accuracy of these
methods when inferring two closely spaced loci, with increasing distance between
those loci (Fig.2c). While closely spaced loci are challenging to distinguish, we
observe that muMerge smoothly transitions from calling a single inferred loci
(when µ1 and µ2 are too close to be resolved) to two distinct loci. In contrast,
the merge and intersect methods show abrupt transitions that follow increasingly
poor ROI width estimates (Fig.2d).

3.3 Transcription Factor Enrichment Analysis
Armed with the defined set of ROIs, the goal of TFEA is to determine if a
given TF motif shows positional enrichment preferentially at regions with higher
differential signal. Positional enrichment is consistent with the TF contributing
to observed alterations. In prior work, we assessed the enrichment of motifs
relative to positions of RNA polymerase initiation using a co-occurrence metric
referred to as a motif displacement score (MD-Score; see Supp. Fig.5 for full
details)[6]. Unfortunately, the MD-Score approach not only ignored alterations
in transcript levels (See Supp. Fig.6) but also utilized an arbitrary distance
threshold that classified motif proximity in a binary fashion.

To include transcript levels into the metric, we can rank ROIs by differential
signal (e.g. transcription) before subsequently performing motif displacement
calculations within these regions. The simplest approach to this problem is to
compare the MD-Scores between the set of differentially transcribed regions and
regions whose transcription is unchanged, a method we refer to as the differential
motif displacement analysis (MDD, see Supp. Fig.7 for full details)[52, 24].
Unfortunately, the MDD method introduces an additional arbitrary threshold
to classify regions as differentially transcribed or not and still uses the distance
threshold set by the MD-Score approach.

In TFEA, we sought a non-binary enrichment metric that accounts for not
only the underlying changes in transcription but also the positional enrichment
of the motif (Fig.1). We begin by leveraging the statistically robust, gold
standard DE-Seq package[2, 41] to rank regions based not only on the differential
p-value but also the direction of fold change. Each region of interest then
contributes positively to the enrichment curve in a weighted fashion. These
weights are determined by the distance of the motif to the reference point using
an exponential function to favor closer motifs. The subsequent enrichment score
(E-Score in Fig. 1) is proportional to the integrated difference between the
observed and background enrichment curves, calculated as the area under the
curve (AUC) in Fig. 1 (see Eq. 8 for precise definition). The background (null)
enrichment curve assumes uniform enrichment across all ROIs, regardless of
differential signal.

By default, TFEA accounts for the known GC bias of enhancers and promoters
by incorporating a correction to the enrichment score (Supp. Fig.8). Once
E-Scores for all TFs have been calculated, we fit a linear regression to the
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distribution of these scores as a function of motif GC-content. Corrected E-
Scores are then calculated from the observed E-Score with the y-offset observed
from the linear regression fit (see Eq. 11). This GC bias correction can be
optionally turned off.

Subsequently, we assess the significance of the enrichment score by comparison
to randomized ROI order, similar to GSEA[56]. To this end, we generate a null
distribution of enrichment scores from random permutations, shuffling the rank
order of regions and recalculating the E-Score for each shuffled permutation.
The final significance of the enrichment score is then calculated from the Z-score,
using the Bonferroni correction to account for multiple hypothesis testing. In this
manner, TFEA provides a statistically robust and principled way of calculating
the motif enrichment that accounts for both differential transcription and motif
position in a manner that does not require arbitrary cutoffs.

3.4 Differential transcription signal improves motif infer-
ence over positional information alone

To assess the effectiveness of the TFEA method, we first compared its per-
formance to both the MD-Score[6] and MDD-Score[52, 24] approaches. We
examined a dataset in which a 1 hr Nutlin-3a treatment of HCT116 cells is used
to activate TP53[1]. For all methods, sites of RNA polymerase loading and
initiation were determined from GRO-seq data[1] using the Tfit algorithm[7] and
combined using muMerge to identify ROIs. For all methods, the significance
cutoff utilized was determined by comparing within treatment replicates (e.g.
DMSO to DMSO) and identifying the cutoff at which no changes are detected
(see Supp. Fig.9). Using these per method cutoffs, we recover TP53 from all three
approaches (Fig. 3a). Notably, by including differential transcription information,
the signal to noise ratio of TP53 detection is significantly improved—modestly
in the case of MDD and dramatically for TFEA.

We next sought to determine whether TFEA could infer the responsible TF
when the underlying changes in transcription were predominantly alterations in
existing transcript levels. For this test, we relied on the fact that TP53 response
in epithelial cells depends on the TP53 family member TP63[32]. Because
TP53 and TP63 have nearly identical motifs, we reasoned that the presence
of a constitutively active TP63 would result in elevated basal transcription
proximal to TP53/TP63 motifs. To test this hypothesis, we performed PRO-seq
on MCF10A cells after 1 hour treatment of either DMSO (control) or Nutlin-3a,
and applied all three methods to the resulting data.

Consistent with the constitutive activity of TP63, we observed no change in
the TP53 motif by MD-Score analysis (Figure 3b, left). This is due to a larger
fraction of ROIs having pre-existing transcription prior to Nutlin-3a exposure in
MCF10A relative to HCT116 cells (Figure 3c-e, Supp. Fig.10). While the MDD-
Score method recovers TP53 (Fig.3b, middle), TFEA significantly improves the
signal of the TP53 motif relative to the distribution of all other motifs (Fig.3b,
right). For more detailed analysis of TP53 after Nutlin-3a in HCT116 and
MCF10A, see Supp. Figs 11 and 12.
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3.5 TFEA improves motif enrichment detection by incor-
porating positional information

We next sought to quantify the performance of TFEA with varying degrees
of signal, background, and positional information. As a reference point, we
leveraged the widely used MEME-Suite component AME, which quantifies motif
enrichment by fitting a linear regression to ranked ROIs as a function of motif
instances (Supp. Fig.13) [45]. To benchmark the two methods, we required
biologically representative data sets with known motif enrichment so that error
rates could be readily calculated. To this end, we utilized the sites of RNA
polymerase initiation detected in untreated GRO-seq datasets of HCT116 cells[1]
as the background ROIs. These regions were arbitrarily ordered to mimic a
pattern of differential transcription. Subsequently, specific instances of the TP53
motif were generated from the position specific scoring matrix obtained from
the HOCOMOCO database[33] and embedded via sequence replacement into
the ordered ROI list.

We then varied the number of motifs across ROIs to simulate distinct signal
to noise ratios and assess the accuracy of both TFEA and AME (Supp. Fig.14).
Since the significance cutoff thresholds chosen for each method greatly influence
the subsequent results, we first measured the mean false positive rate (FPR) and
mean true positive rate (TPR) across tests of varying signal and background
(Figure 4a). We found that AME detected many false positives (defined as all
motifs besides TP53) at loose threshold cutoffs and therefore chose a strict cutoff
of 1e-30 for AME. TFEA on the other hand, had a very low FPR even at loose
thresholds with the TPR decreasing as the cutoff became stricter. We therefore
chose a cutoff of 0.1 for TFEA. We next calculated an F1-Score based on the
number of times each method correctly recovered the TP53 motif (and no other
motifs) out of the 10 simulations for each test (Fig.4b).

We first measured F1-Scores for AME and TFEA with varying relative
amounts signal and background (Figure 4b). We found that at high background
levels (above 80%), AME was no longer able to detect the enrichment of TP53.
TFEA on the other hand, was able to detect TP53 even at high background
levels by incorporating positional information. Computing the differential F1-
Scores between the two methods (Figure 4c) shows that TFEA performs well in
cases where AME detects no enrichment of TP53 (26% of cases), whereas AME
outperforms TFEA in 21% of cases.

To further determine how TFEA handles the loss of positional information, we
chose the highest signal level tested and altered the variance (standard deviation
of the signal position) and the background level (Figure 4d). As expected, AME
shows consistent behavior regardless of the positional information of the motif.
In contrast, TFEA is able to distinguish signal with differing levels of positional
localization. In the extreme case of no positional localization (motifs embedded
with a uniform distribution), TFEA performs only slightly worse than AME
(Figure 4e).

Additionally, we sought to benchmark the runtime performance and memory
usage of TFEA against AME. Here we leverage a first order Markov model (from
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untreated DMSO samples[1]) to simulate increasing numbers of ROIs as input.
Analyzing the core collection of HOCOMOCO TF motifs (n=401), we found that
AME runtime increased exponentially while TFEA runtime increased linearly
with a single processor (Supp. Fig.15a). Importantly, TFEA can utilize parallel
processing leading to significantly faster runtimes. In terms of memory usage,
although TFEA consumes more memory than AME, even in the worst case of
100,000 input regions, TFEA’s memory footprint is less than 1Gb and therefore
can still be run on a local desktop computer (Supp. Fig.15b).

Finally, we sought to examine the performance of TFEA and AME on real
data and determine whether TFEA could identify biologically relevant signal
in a dataset other than nascent RNA sequencing. Cap analysis of gene expres-
sion (CAGE) precisely defines the transcription start site (TSS) of individual
transcripts[53, 21, 3]. We analyzed a CAGE-seq timeseries dataset from the
FANTOM consortium[21, 9]. In this dataset, human derived monocytes were
differentiated into macrophages and treated with lipopolysaccharide (LPS), a
proxy for bacterial infection. Differential expression analysis was performed on
each LPS time point comparing treatment to control to obtain a list of ranked
ROIs.

TFEA recovered the immediate innate immune response, exemplified by the
most rapid reported (within 15 min) activation of NF-κβ (TF65/RELA, RELB,
and NFKB1; Figure 5a). Additionally, TFEA temporally resolved the known
secondary response that arises at later time points, which includes the activation
of the IFN-stimulated gene factor 3 (ISGF3)[46] complex, comprising IRF9 and
STAT1/2[48]. In contrast, AME did not recover the innate immune response at
the earliest time point and provided less temporal resolution when distinguishing
primary and secondary responses.

Concurrent with the immediate innate immune response, TFEA identified
a set of TFs that exhibit a rapid decrease in E-Scores including ELF1/2[17],
TYY1 [30][63], USF1/2[31], and GABPA[62]. The decreased E-Score set includes
TYY1, a transcriptional inhibitor known to be activated directly by NFκB [54].
Reduction in the E-Score of TYY1 illustrates an important aspect of TFEA—
namely, that it cannot distinguish between the activation of a repressor or the
loss of an activator. Ultimately, we show with this proof of principle that if the
cellular response to LPS was not known apriori, we could temporally resolve
key aspects of the regulatory network using TFEA and dense time series CAGE
data (Figure 5b and Supp. Figure 16).

3.6 TFEA works on numerous regulatory data types in-
cluding ChIP and accessibility data

Though we developed muMerge and TFEA for the purpose of inferring TF
activity from high resolution data on transcription initiation, this procedure can
in principle be used on any assay that produces a localized readout on regulation,
such as chromatin immunoprecipitation (ChIP) or DNA accessibility. Although
these data sets are less precise and are not direct readouts of polymerase initiation,
the popularity of these data make them readily available. To determine whether
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TFEA could adequately infer TF activity from these datasets, we analyzed
a timeseries dataset from ENCODE[19, 44] in which cells were treated with
dexamethasone (Dex)—a known activator of the glucocorticoid receptor (GR).

TFEA correctly identifies GR as the key responding TF from the datasets
that most closely capture RNA polymerase initiation (including p300, H3K27ac,
and DNA accessibility), and does not identify GR for the transcriptionally
repressive mark H3K9me3 (Figure 6a)[40, 44]. Surprisingly, the effects of p300
and H3K27ac are seen rapidly, as soon as 5min after dexamethasone treatment.
As expected, H3K27ac deposition is temporally lagged behind its canonical
acetyl-transferase p300[29, 60, 51]. Additionally, the enhancer marks H3K4me1
and H3K4me2 show strong enrichment of GR by 30min but the promoter mark
H3K4me3 shows only modest enrichment, further supporting the finding that
GR binds primarily at enhancers[44] (Supp. Fig. 17). Using the diversity of data
types and dense time series, we can construct a temporally resolved mechanism
of how GR effects changes in transcription (Figure 6b and c). In short, TFEA’s
results for this array of accessibility marks are exactly consistent with biological
expectation.

3.7 Discussion
We present here transcription factor enrichment analysis (TFEA), a computa-
tional method that measures the global correlation between the position of a TF
motif and its differential effects on transcription across the genome, following
any given perturbation. We show that TFEA outperforms existing enrichment
methods when positional data is available and is comparable to these methods in
the absence of positional signal. Further, we show that TFEA, when leveraged
with high resolution time series data, can provide mechanistic insight into the
order of regulatory events responding to the perturbation.

A key aspect of TFEA is the incorporation of both positional and differential
information in calculating TF activity. Most current motif enrichment algorithms
use solely differential information, likely due to the poor positional resolution
on historically popular techniques such as ChIP-Seq. Methods such as nascent
transcription and CAGE provide higher resolution on the position of RNA
polymerase initiation genome wide. To leverage the improved resolution of these
methods, we introduce muMerge, a statistically principled way of combining
ROIs across replicates and conditions that better captures position and length-
scale information as compared to standard merging or intersecting approaches.
The presence of improved positional information greatly increases the ability to
detect biologically relevant TFs.

Although TFEA makes significant improvements in detecting the activity
of TFs in response to perturbations, there are several aspects of this approach
that could be improved. TFEA is dependent on having a collection of known
motifs, yet some TFs have no known motif or one of poor quality. However, over
time, the quality and numbers of TFs in the major databases have dramatically
improved[38]. Furthermore, TFEA can only distinguish between paralogous
motifs to the extent that they have distinct motifs. Importantly, motif scanning
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still requires a fixed cutoff within TFEA. Future iterations of the method
could conceivably eliminate this cutoff, but likely this will substantially increase
runtimes for what may only be minor gains in performance. Genome-wide, sites
of transcription initiation (both promoters and enhancers) show substantial GC
bias. Often short high GC content motifs, which are exceedingly common in
ROIs, appear to show significant changes with a perturbation. While we made
some effort to account for this using linear regression, this approach is empirical
and a more principled approach is desired.

Despite these caveats, TFEA recovers known TF dynamics across a broad
range of data types in response to a variety of perturbations. Inevitably, the
data type utilized influences the detection ability of TFEA. For example, while
CAGE data provides precise resolution on the TSS, it must be deeply sequenced
to reliably detect enhancer associate transcription events[15]. Consequently, TFs
that predominantly regulate enhancers will likely be less detectable in poorly
sequenced CAGE data. On the other hand, some methods are more capable of
detecting immediate changes in RNA polymerase initiation, allowing for shorter
more refined time points. As demonstrated here, TFEA is able to leverage the
information from each data set by incorporating both its distinct positional and
differential signal. Applying TFEA to diverse data types, using dense time series,
can uncover a detailed mechanistic understanding of the key regulators that
enact the cell’s dynamic response to a perturbation.

4 Online Methods
4.1 TFEA
We have developed Transcription Factor Enrichment Analysis (TFEA) to identify
transcription factors that demonstrate significant differential activity following
a perturbation. It has been observed that, during a perturbation, the binding
sites of active transcription factors co-localize with regulatory regions that
exhibit strong differential RNA polymerase initiation[6]. TFEA leverages this
observation to calculate an enrichment score that quantifies this activity and an
associated significance for each TF.

Here we describe in detail the key steps of the TFEA pipeline (shown in
Figure 1)—specifically, for each TF we describe how the main input (regions of
interest—ROIs) are defined, how the ROIs are ranked, and how the enrichment
score is subsequently calculated and GC-corrected.

4.1.1 Defining the Regions of Interest with muMerge

One input required for TFEA is a common set of regions of interest (ROIs)
on which all experimental samples are evaluated. Each region (consisting of a
genomic start and stop coordinate) represents a reference point (the midpoint
of the region) and an uncertainty on that reference point (the width of the
region). Biologically, the reference point is the presumed transcription start site.
Regions can be derived from a number of data types, with varying degrees of
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precision. For example, CAGE data provides a highly precise measure of a TSS
while nascent sequencing is slightly less precise. Other assays like ChIP (for
RNA polymerase or H3K4 methylation) or ATAC have much lower positional
precision.

Regardless of the assay, most methods for identifying such regions fit each
dataset independently (e.g., a peak caller for ChIP data or Tfit for identifying
sites of bidirectional transcription in nascent data). As a result, these regions will
not be exactly consistent between samples (e.g. some sites are condition specific
and even for shared sites boundaries may vary). Therefore, a method is needed
to combine the regions from all the samples into a consensus set. To this end, we
developed a probabilistic, principled method (hereafter referred to as muMerge)
for determining consensus regions of interest, informed by the corresponding
regions predicted from individual samples. muMerge was developed specifically
for determining the set of consensus RNA polymerase loading and initiation
sites observed in nascent sequencing data (by combining bidirectional calls from
any number of samples) but it can also be applied to peak calls generated from
numerous other regulatory data types (e.g., ChIP, ATAC, or histone marks).

The basic assumption made bymuMerge is that each sample is an independent
observation of an underlying set of hypothetical loci—where each hypothetical
loci has a precise critical point µ, of which the corresponding sample region
([start, stop]) is an estimate. We assume this loci is more likely to be located at
the center of the sample region than at the edges, so muMerge represents the
sample region by a standard normal probability distribution, centered on the
region, whose standard deviation correlates with region width.

To calculate a best estimate (the ROI) for a given loci, muMerge calculates
a joint probability distribution across all samples from all regions that are in the
vicinity of the loci. This joint distribution is calculated by assuming:

1. replicates within a condition are independent and identically distributed
(i.i.d.)

2. replicates across conditions are mutually exclusive (i.e., a sample cannot
represent multiple experimental conditions)

Hence muMerge computes the product of the normal distributions across all
replicates within a condition and then sums these results across all conditions.
The best estimates for the transcription loci µ are taken to be the maxima of
this joint distribution—these are the ROI positions. Finally, to determine an
updated width, or confidence interval, for each ROI, muMerge assumes that
the original sample regions whose midpoints are closest to the new position
estimate are the most informative for the updated width. Thus the ROI width
is calculated by a weighted sum of the widths of the original regions, weighted
by the inverse of the distance to each one.

muMerge mathematical description: Principally, muMerge makes two
probabilistic assumptions about sequenced samples:
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• Assumption A: Replicate samples are independent measurements of
identical experimental conditions and therefore any corresponding sample
regions within them are independent and identically distributed (i.i.d.) ob-
servations of a common random variable (i.e., the underlying hypothetical
loci).

• Assumption B: Cross-condition samples are independent measurements
of mutually exclusive experimental conditions and therefore any sample
regions within them are observations of (potentially) disjoint random
variables.

These two assumptions inform how muMerge accounts for each individual sample,
when computing the most likely ROI for any given genomic location (see below
for further details).

To start, the two inputs to muMerge are a set of regions for each sample
(genomic coordinates: {[start, stop], ...}) that annotate the sequenced features
present in the dataset, as well as an experimental conditions table that indicates
the sample groupings (which samples are from which experimental condition).
With these inputs, muMerge performs the following steps to compute a global
set of ROIs:

1. Group overlapping sample regions, processing each group one at a time

2. Express each sample region as a positional probability distribution

3. Generate a joint distribution

4. Identify maximum likelihood ROI positions from the joint distribution

5. Compute ROI widths via weighted sum

6. Adjust the sizes of overlapping ROIs

7. Record final ROIs for the given group

8. Repeat 2–8 for all remaining groups

First, from the input samples, muMerge groups all sample regions that overlap
in genomic coordinate (a region is grouped with all other regions it overlaps
and, transitively, with any regions overlapping those). We denote a single group
of overlapping regions as Gr. This grouping is done globally for all samples,
resulting in a set of grouped regions G = Gr, such that every sample region is
contained in exactly one grouping Gr (i.e., Gr ∩ Gs = ∅, ∀ r 6= s). Then each
group of regions, Gr, is processed individually, as the remainder of this section
describes. For a given group, we denote each sample region within it as the
2-tuple (µk, σk)ij ∈ Gr, where µk is the genomic coordinate (base position) of
the center of the region and σk is the region half-width (number of bases). The
indices denote the k-th sample region for replicate j in condition i.
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muMerge then processes the regions in Gr as follows. Each region within the
group is expressed as a standard normal distribution (φ) as a function of base
position x,

(µk, σk)ij → p
(k)
ij (x) = φ

(
x− µk

ρ σk

)
(1)

where ρ is the “width ratio”— the ratio of the half-width sample region to the
standard deviation of the normal distribution—with a default of ρ = 1 (user
option). This distribution represents the probability of the location for the
underlying hypothetical loci (µ), of which (µk, σk)ij is an estimate. For those
samples with no regions within Gr, the probability distribution is expressed as a
uniform, p(k)

ij (x) = 1/∆ where ∆ is the full range encompassed by the overlapping
sample regions. In other words, we assume that if the sample contains no data
to inform the location of the underlying loci at that location, then all positions
are equally likely for that sample. muMerge then calculates a joint distribution
(P(x)) by combining all p(k)

ij (x) for the group as follows:

P(x) =
∑

i


∏

j

(∑

k

p
(k)
ij (x)

)
 (2)

Here we are calculating the product of the replicate distributions (index j—
those within a given experimental condition), consistent with our probabilistic
assumption A, and the sum of the resulting distributions across experimental
conditions (i index), consistent with our probabilistic assumption B. Though
this function is not a normalized probability distribution, we are only interested
in relative values of P(x). Specifically, we are interested in the maxima of this
function. We identify the set of maxima (which we denote {µ̂k}) and rank them
by the function value for each position, P(µ̂k). We then keep the top M + 1
from the ranked set, where M is the median number of regions per sample in Gr

(user option). This is our final set of estimates on the hypothetical loci positions,
µ—i.e., the positions of our ROIs for group Gr.

For each µ̂k, we then calculate a width for the resulting ROI. We do so for
each by calculating a weighted sum over the set of all original sample regions in
the group, {(µk, σk)ij}, weighted by the inverse of the distance from the final
position estimate to each µk. Thus the final ROI half-width, σ̂k, is calculated as
follows:

σ̂k =
∑

i

σi

|µ̂k − µi|+ 1

/∑

i

1
|µ̂k − µi|+ 1 (3)

where i indexes all sample regions in the group Gr = {(µk, σk)ij}. Our rationale
is that the width of those sample regions that are closer to the ROI position µ̂k,
are more informative for the ROI width and therefore are given a larger weight.
This results in a set of ROIs {(µ̂k − σ̂k, µ̂k + σ̂k)}.

Finally, we determine if there is overlap between any of the regions in this set
of ROIs. If so, any two overlapping regions are reduced in size, symmetrically
about their centers, until they no longer overlap. This is done so that any
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genomic position can be uniquely associated with an ROI. The final ROIs for
the group are then written to an output file to be used downstream in the
pipeline. This process is repeated for all groups of overlapping sample regions
(i.e., ∀Gr ∈ G).

4.1.2 Ranking ROIs

With a set of ROIs identified, the next step is to rank them by differential signal.
Because the goal of TFEA is to identify transcription factors that are enriched
during a perturbation and because the ROIs are associated with transcription fac-
tor activity, it follows that a ranking based on the differential signal at the ROIs
would capture the regulatory behavior of the TF. For different types of datasets,
the differential signal represents different biological processes—differential tran-
scription for nascent (PRO-seq or GRO-seq), differential accessibility (DNAse or
ATAC-Seq), and differential occupancy for ChIP. There are a number of ranking
metrics one could use that are based on these differential signals—for example,
difference in coverage, log-fold change, or a differential significance (p-value).
For TFEA, we chose to rely on a well-established tool (DESeq2 ) to perform
our ranking, since it was designed to model the statistical variation found in
sequencing data[41].

For a set of ROIs, TFEA calculates read coverage for each replicate and
condition using bedtools multibamcov (version 2.25.0)[50]. TFEA then inputs
the generated counts table into DESeq2 [41] (or DESeq[2] if no replicates are
provided) to obtain differential read coverage for all ROIs. By default, these
regions are then ranked by the DESeq2 computed p-value, separated by positive
or negative log-fold change (alternative user option to rank the ROIs by fold-
change). In other words, the ROIs are ranked from the most significant positive
fold-change to the most significant negative fold-change.

4.1.3 Identifying location of motif instances

Accurately identifying the locations of motif instances relative to each ROI is a
critical step in the TFEA pipeline. By default TFEA uses the motif scanning
method FIMO, which is a part of the MEME suite (version 5.0.3)[23]. FIMO
represents each TF by a base-frequency matrix and uses a zero-order background
model to score each position of the input sequences. For each ROI, we scan
the 3kb sequence surrounding the ROI center (µ̂i ± 1.5kb). This 3kb window
was chosen primarily to reduce computation time and is also consistent with
the window used for the MD-score method[6]. For each TF, we utilize a scoring
threshold of 10−6 and keep the highest scoring position (denoted mi), in the
event more than one motif instance is identified. If no position score above
the threshold, then no mi is recorded for the ROI. Our background model is
determined by calculating the average base frequency over all 3kb regions. For
each TF, we use the frequency-matrix from the HOCOMOCO database[33] with
a default psuedo-count of 0.1.
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4.1.4 Enrichment Score

With the motif instances identified for each of the ranked ROIs, we now detail
how TFEA calculates the enrichment score (“E-Score”—in Fig. 1) for each
transcription factor. The procedure for calculating enrichment requires two
inputs:

1. N-tuple sequence (µ̂i)—the genomic coordinates for reference points, as-
sumed to be the centers of all ROIs (e.g., consensus ROIs calculated
by muMerge), ranked by DESeq2 p-value (separated by the sign of the
fold-change).

2. Sequence (mi)—the genomic coordinates of each max-scoring motif instance
(e.g., motif loci generated by scanning with FIMO), for each ROI.

We first calculate the motif distance di for each ROI—the distance from each
µ̂i to the highest scoring motif instance mi within 1.5kb of µ̂i. If no mi exists
within 1.5kb, then di is assigned a null value (Ø) (Eq. 4).

di =
{
|µ̂i −mi|, if mi is present
Ø, if mi is not present

(4)

Next, we calculate the background distribution of motif distances. We assume
the majority of the ROIs experience no significant fold-change—namely, those
ROIs in the middle of the ranked list. Consequently, we calculate the mean,
background motif distance (Eq. 5) for those ROIs whose rank is between the
first and third quartiles of the sequence of ROI positions, (µ̂i), as follows

d̄ = mean{di | ∀ i, if Q1 ≤ i ≤ Q3 and di 6= Ø} (5)

where Q1 and Q3 are the first and third quartiles, respectively. Our assumption
is that the inter-quartile range of the sequence (µ̂i)—between indices Q1 and
Q3—represents the background distribution of motif distances for the given
transcription factor, and therefore defines the weighting scale for significant ROIs
in our enrichment calculation. We found this to be essential since the background
distribution varies between transcription factors. This variation in the back-
ground can be attributed to the similarity of a given motif to the base content
surrounding the center of ROIs. For example, in the case of RNA polymerase
loading regions identified in nascent transcription data (which demonstrate a
greater GC-content proximal to µ as compared to genomic background[6]), GC-
rich transcription factor motifs were more likely to be found proximal to each
ROI by chance and thus resulted in a smaller d̄ than would be the case for a
non-GC-rich motif.

Having calculated the mean background motif distance, we proceed to cal-
culate the enrichment contribution (i.e., weight—Eq. 6) for each ROI in the
sequence (see “Weight Calculation” in Fig. 1).

wi =
{
e−di/d̄, if di 6= Ø
0, if di = Ø

(6)
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In order to calculate the E-Score, we first generate the enrichment curve for
the given TF (solid line in “Enrichment Curve” in Fig. 1) and the background
(uniform) enrichment curve (dashed line in “Enrichment Curve” in Fig. 1). We
define the E-Score as the integrated difference between these two (scaled by a
factor of 2, for the purpose of normalization). The enrichment curve (Eq. 7),
which is the normalized running sum of the ROI weights, and the E-Score (Eq.
8) are calculated as follows:

e(i) =
∑i

k=0 wk∑N
k=0 wk

(7)

E = 2
N

∑

i

(
e(i)− i

N

)
(8)

where i is the index for the ROI rank and i/N represents the uniform, back-
ground enrichment value for the ith of N ROIs. The background enrichment
assumes every ROI contributes an equal weight wi, regardless of its ranking
position. Therefore, the enrichment curve (Eq. 7) will deviate significantly from
background if there is correlation between the weight and ranked position of the
ROIs. In this case, the E-Score will significantly deviate from zero, with E > 0
indicating either increased activity of an activator TF or decreased activity of a
repressor TF. Likewise, E < 0 indicates either a decrease in an activator TF or
an increase in a repressor TF. By definition, the range of the E-Score is −1 to
+1.

Unlike GSEA, which uses a Kolmogorov–Smirnov-like statistic to calculate
its enrichment score[56], the TFEA E-Score is an area-based statistic. GSEA
was designed to identify if a predetermined, biologically related subset of genes
is over-represented at the extremes of a ranked gene list. Therefore, the KS-like
statistic is a logical choice for measuring how closely clustered are the elements
of the subset, since it directly measures the point of greatest clustering and
otherwise is insensitive to the ordering of the remaining elements. Conversely,
because TFEA’s ranked list does not contain two categories of elements (the
ROIs) and all elements can contribute to the E-Score, we wanted a statistic
that was sensitive to how all ROI in the list were ranked—for this reason, we
chose the area-based statistic. The null hypothesis for TFEA assumes all ROI
contribute equally to enrichment, regardless of their motif co-localization and
rank. Hence the uniform background curve, to which the enrichment curve is
compared.

In order to determine if the calculated E-Score (Eq. 8) for a given tran-
scription factor is significant, we generate a E-Score null distribution from
random permutations of (µ̂i). We generate a set of 1000 null E-Scores {E′i},
each calculated from an independent random permutation of the ranked ROIs,
(µ̂i). Our E-Score statistic is zero-centered and symmetric, therefore we assume
{E′i} ∼ N (E0, σ

2
E). The final E-Score for the transcription factor is compared

to this null distribution to determine the significance of the enrichment.
Prior to calculating the E-Score p-value, we apply a correction to the E-Score

based on the GC-content of the motif relative to that of all other motifs to be
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tested (user configurable). This correction was derived based on the observation
that motifs at the extremes of the GC-content spectra were more likely to called
as significant across a variety of perturbations. We calculate the E-Scores for the
full set of transcription factors as well as the GC-content of each motif, {(gi, Ei)}.
We then calculate a simple linear regression for the relationship between the two,

b̂ = Ē − m̂ḡ (9)

m̂ =
∑n

i=1(gi − ḡ)(Ei − Ē)∑n
i=1(gi − ḡ) (10)

EGC(g) = b̂+ m̂g (11)

where Ē and ḡ are the average E-Score and average GC-content. EGC(g) is
the amount of the E-Score attributed to the GC-bias for a motif with GC-
content g. Thus the final E-Score for the transcription factor is given by ET F =
E−EGC(gT F ), the difference between Eq. 8 and 11. If GC-content correction is
not performed, then Eq. 8 is taken to be the final E-Score. The p-value for the
final TF E-Score is then calculated from the Z-score, ZT F = (ET F − E0)/σE .

4.2 Software Availability
TFEA is available for download at https://github.com/Dowell-Lab/TFEA and
comes with muMerge integrated. Alternatively, muMerge can be downloaded
independently at https://github.com/Dowell-Lab/mumerge. Additionally, TFEA
can be utilized through the web interface at https://tfea.colorado.edu/.

4.3 Benchmarking
In order to benchmark the performance of muMerge and TFEA, we performed
a number of simulations that isolate the different parameters of muMerge and
TFEA, comparing the performance to that of some commonly used alternatives.
Here we describe how the data for each test was generated.

4.3.1 muMerge: Simulating replicates for calculation of ROIs

To test the performance of muMerge in a principled manner, we first generate
replicate data in a way that simulates the uncertainty present in individual
samples. For each replicate, we perform 10,000 simulations of sample regions for a
single loci, and calculate the average performance. For each simulation we assume
a precise position and width for the hypothetical loci and model the uncertainty
of each sample region with a binomial and Poisson distribution, respectively.
The position of each sample region, µ̂, is pulled from a symmetric binomial
distribution µ̂ ∼ B(n = 100, p = 0.5), centered at zero. The half-width of each
sample region, W , is pulled from a Poisson distribution W ∼ Pois(λ = 100).
The specific distributions utilized to generate the sample regions are as follows:
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loci estimate ≡
{
position: µ̂ ∼ µ+B(n = 100, p = 0.5)− np
half-width: σ̂ ∼ Pois(λ = 100)

(12)

Here B(·) is the binomial distribution centered at np with success probability
0.5 and variance np(1− p) = 25. Thus, the position estimator µ̂ is centered at µ.
Pois(·) is the Poisson distribution, thus, the half-width for each sample region
have mean and variance of λ = 100.

The first test consisted of inferring a single loci (located at µ = 0) from an
increasing number of replicates. A sample region for each replicate was generated
from Eq. 12. This simulation was repeated 10,000 times for each number of
replicates being combined. The methods muMerge, bedtools merge and bedtools
intersect were applied to each of the 10,000 simulations. The average error on
the midpoint (its deviation from the true loci position, µ = 0) and region width
were calculated for the regions generated from each method, averaged over all
10,000 simulations. The behavior of the average positional error and region
width as a function of number of combined replicates is shown in Fig. 2a, b.

The second test consisted of inferring two loci (µ1 = −x and µ2 = +x)
as the distance between those loci was increased (from x = 0 to 200). This
simulation was repeated 10,000 times for each value of x (with 3 replicates). The
distribution of the inferred positions and widths were plotted, using muMerge,
bedtools merge and bedtools intersect. The distribution of positions and widths
as a function of the distance between µ1 and µ2 are shown in Fig. 2c, d.

4.3.2 TFEA: Simulated motif enrichment

To generate test sequences for benchmarking, we randomly sampled 10,000
sequences from detected bidirectionals in untreated HCT116 cells [1]. We then
embedded instances of the TP53 motif in the highest ranked sequences with
a normal distribution with µ = 0 and σ = 150 (representative of signal). To
simulate background noise, we embedded instances of the TP53 motif with
a uniform distribution to a percentage of the remaining sequences (chosen
randomly). To calculate an F1-Score, for each scenario of varying signal to
background we generated 10 simulations. We then calculated the harmonic
mean of precision and recall with the aggregate p-values of all 10 simulations
measuring all 401 TF motifs within the HOCOMOCO database (total 4010 TF
motifs). True positives, in this case, were the 10 instances of the TP53 motif
that should be significantly enriched. Any other significantly enriched TF motifs
were considered false positives. We performed two sets of tests: 1) varying the
amount of signal and the amount of background and 2) varying the standard
deviation of the highest signal tested (10% signal; with the last scenario being
uniform signal distribution) and the amount of background.
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4.3.3 TFEA: Testing compute performance

The base (ATGC) content of regulatory regions was calculated from the sites of
RNA polymerase initiation inferred in HCT116 DMSO (using Tfit; described in
[6]). One million 3kb sequences were generated based on the empirical probability
of the positional base composition. We then randomly sampled an increasing
number of sequences (up to 100,000) to be used in the computational processing
tests. Run time and compute resources were measured using the Linux time
command on a single node of a 70-node mixed-platform high-memory compute
cluster running CentOS 7.4. To compute the runtime for a single processor,
we added the systime and usertime. To compute memory usage for a single
processor, we reran TFEA using only a single processor.

4.4 Datasets Utilized
We generated PRO-seq libraries for MCF10A cells with and without Nutlin-3a.
Additionally, a number of publicly available datasets were utilized, including:
Allen 2014 (Nutlin-3a, GC-correction), ENCODE (GGR: Reddy - Dex/GR) and
FANTOM (Baillie - Macrophage/LPS). See supplemental material for a full list
of accession codes.

4.4.1 PRO-Seq in MCF10A

Cas9RNP formation: sgRNA was formed by adding tracrRNA (IDT cat#
1072533) and crRNA (TP53 exon 2, positive strand, AGG PAM site, sequence:
GATCCACTCACAGTTTCCAT) in a 1:1 molecular ratio together and then
heating to 95◦C and then allowing to slowly cool to room temperature over 1
hour. Cas9RNP was then formed by adding purified Cas9 protein to sgRNA at
a ratio of 1:1.2. 3.7µL of purified Cas9 protein at 32.4µM was added to 2.9µL
of 50µM sgRNA. This was then incubated at 37◦C for 15 minutes, and used at
10µM concentration within the hour.

Donor Plasmid Construction: Vector Builder was used to construct plas-
mid. Insert was flanked by 1.5kb homology arms, and mCherry was inserted as
a selection marker.

CRISPR/Cas9 Genome Editing: MCF10A cells cultured in DMEM/F12
(Invitrogen #11330-032) media containing 5% horse serum (LifeTech #16050-
122), 20ng/mL EGF ((Peprotech #AF-100-15), 0.5µg/mL Hydrocortisone (Sigma
#H0888-1g), 100ng/mL Cholera toxin (Sigma #C8052-2mg), 10µg/mL insulin
(Sigma #I1882-200mg), and 1x Gibco 100x Antibiotic-Antimycotic (Fisher Sci,
15240062) penicillin-streptomycin. Cells were split 24 hours prior to experiment
and grown to approximately 70% confluency on a 15cm plate. Media was
aspirated, and the cells were washed with PBS. 4ml of trypsin per plate were used
to harvest adherent cells, after which 8mL of resuspension medium (DMEM/F12
containing 20% horse serum and 1x pen/strep) was added to each plate to
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neutralize the trypsin. Cells were collected in a 15ml centrifuge tube and spun
down at 1,000xg for 5 minutes, then washed in PBS and spun down again at
1,000xg for 5 minutes. Cells were counted using a hemocytometer and 5x105

cells were put in individual 1.5mL eppedorph tubes for transfection. Cells
were re-suspended in 4.15µL Buffer R, 10µM Cas9RNP (6.6µL), 1µg WTp53
donor plasmid (1.25µL). Mixture was drawn up into a 10µL Neon pipet tip,
electroporated using the Neon Transfection Kit with 10µL tips (1400V, 20ms
width, 2 pulse). Transfected cells were then pipetted into 2mL of antibiotic free
media. After 1 week of recovery, cells were then single cell sorted into 96 well
plate based on mCherry expression. Clones were then verified with sequencing,
PCR, and western blot.

Nuclei Preparation: MCF10A WTp53 cells were seeded on three 25cm dishes
(1x107 cells per dish) for each treatment 24 hours prior to the experiments ( 70%
confluency at the time of the experiment). Cells were treated simultaneously
with 10µM Nutlin3a or 0.1% DMSO for 1 hour. After treatment, cells were
washed 3x with ice cold PBS, and then treated with 10 ml (per 15 cm plate)
ice-cold lysis buffer (10 mM Tris–HCl pH 7.4, 2 mM MgCl2, 3 mM CaCl2, 0.5%
NP-40, 10% glycerol, 1 mM DTT, 1x Protease Inhibitors (1mM Benzamidine
(Sigma B6506-100G), 1mM Sodium Metabisulfite (Sigma 255556-100G), 0.25mM
Phenylmethylsulfonyl Fluoride (American Bioanalytical AB01620), and 4U/mL
SUPERase-In). Cells were centrifuged with a fixed-angle rotor at 1000xg for 15
min at 4◦C. Supernatant was removed and pellet was resuspended in 1.5 mL lysis
buffer to a homogenous mixture by pipetting 20-30X before adding another 8.5
mL lysis buffer. Suspension was centrifuged with a fixed-angle rotor at 1000xg
for 15 min at 4◦C. Supernatant was removed and pellet was resuspended in 1
mL of lysis buffer and transferred to a 1.7 mL pre-lubricated tube (Costar cat.
No. 3207). Suspensions were then pelleted in a microcentrifuge at 1000xg for 5
min at 4◦C. Next, supernatant was removed and pellets were resuspended in 500
µL of freezing buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mM MgCl2, 0.1 mM
EDTA, 4U/ml SUPERase-In). Nuclei were centrifuged 2000xg for 2 min at 4◦C.
Pellets were resuspended in 100 µL freezing buffer. To determine concentration,
nuclei were counted from 1 µL of suspension and freezing buffer was added to
generate 100 μL aliquots of 10x106 nuclei. Aliquots were flash frozen in liquid
nitrogen and stored at −80◦C.

Nuclear run-on and RNA preparation: Nuclear run-on experiments were
performed as described (Mahat et al., 2016) with the following modifications:
the final concentration of non-biotinylated CTP was raised from 0.25 µM to 25
µM, a clean-up and size selection was performed using 1X AMPure XP beads
(1:1 ratio) (Beckman) prior to test PCR and final PCR amplification, and the
final library clean-up and size selection was accomplished using 1X AMPure XP
beads (1:1 ratio) (Beckman).
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Sequencing: Sequencing of PRO-Seq libraries was performed at the BioFron-
tiers Sequencing Facility (UC-Boulder). Single-end fragment libraries (75 bp)
were sequenced on the Illumina NextSeq 500 platform (RTA version: 2.4.11,
Instrument ID: NB501447), demultiplexed and converted BCL to fastq for-
mat using bcl2fastq (bcl2fastq v2.20.0.422); sequencing data quality was as-
sessed using FASTQC (v0.11.5) and FastQ Screen (v0.11.0), both obtained from
https://www.bioinformatics.babraham.ac.uk/projects/. Trimming and filter-
ing of low-quality reads was performed using BBDUK from BBTools (v37.99)
(Bushnell, n.d.) and FASTQ-MCF from EAUtils (v1.05) [5].

Availability: MCF10A PRO-seq data is available in GEO with accession
numbers GSE142419.

4.4.2 Data Processing

GRO/PRO-Seq data: All GRO-Seq and PRO-Seq data were processed using
the Nextflow[20] NascentFlow pipeline (v1.1 [59]) specifying the ‘–tfit‘ flag.
Subsequent Tfit bed files from all samples were combined with muMerge to
obtain a consensus list of ROIs.

ENCODE data: Raw bed and bam files were downloaded directly from
ENCODE (encodeproject.org). These files were inputted directly into the TFEA
pipeline for processing and analysis. AME analysis was performed on the ranked
ROI list produced as an optional output from TFEA.

FANTOM data: Raw expression tables for the Macrophage LPS time series
were downloaded using the table extraction tool (TET) from the FANTOM Se-
mantic catalogue of Samples, Transcription initiation, And Regulations (SSTAR;
http://fantom.gsc.riken.jp/5/sstar/Macrophage_response_to_LPS). Because
the annotations for regions within hg38 counts tables contained "hg19", we
performed this analysis in the hg19 genome with the hg19 counts table instead
of the hg38 counts table. We then performed DE-Seq analysis (since there were
no replicates) on each time point compared to control and ranked the annotated
regions within the counts table similar to Figure 1. We then ran TFEA and
AME with default settings on each of the three donors. We displayed only data
for donor 2, as this sample had the most complete time series data.

Clustering FANTOM data: We retained TFs with at least 15 significant
(p-adj < 0.1) time points (representing 2/3 of all timepoints) from the TFEA
output and applied K-means clustering. Clustering of the time series data was
performed on the first two hours only, in order to distinguish the early responses
to LPS infection. K-means clustering was conducted using the Hartigan and
Wong algorithm with 25 random starts and 10 iterations for k = 3 [27]. The
optimal number of clusters was selected using the Elbow method [13].
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String database analysis: Protein names from TFs that were found to be
significant in at least 15 time points were taken from the HOCOMOCO database.
These proteins were inputted directly into the String database (https://string-
db.org). Clusters were formed by selecting the MCL clustering option with an
inflation parameter of 3 (default). Network edges were selected to indicate the
strength of the data support. Finally, nodes disconnected from the network were
hidden.
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5 Figure Captions

Figure 1: TFEA calculates motif enrichment using differential and
positional information. The TFEA pipeline requires, minimally, a ranked
list of ROIs. Optionally, a user may provide raw read coverage and regions, in
which case TFEA will perform ranking using DE-Seq [2, 41] analysis. With a
set of ranked ROIs, TFEA analyzes motif enrichment for each motif provided
as a .meme database. For each motif, positions are determined by FIMO scans
and an enrichment curve is calculated by weighting each motif instance (using
an exponential decay function) and adding this value to a running sum. An
E-Score is calculated as 2 * the AUC, e.g. the area under the curve between the
running sum and a uniform background (line). For statistical significance, the
ROI rank is shuffled 1000 times, and E-scores are recalculated for each shuffle.
The true E-Score is then compared to the distribution of E-Scores obtained from
the shuffling events. For example output of TFEA see Supp Fig 1 and Supp Fig
2.

Figure 2: muMerge precisely combines multiple samples into consensus
ROIs. Here we show a comparison of three methods (bedtools merge, bedtools
intersect, and muMerge) for generating ROIs from multiple samples (See Supp
Fig 4 for schematic of each method). Test 1 demonstrates the position and
width accuracy of a calculated ROI for a single loci, µ, as the number of
sample replicates are increased (from one to ten). With muMerge (a) the
positional uncertainty decreases quickly while the (b) estimated ROI width
remains relatively constant. Standard error, indicated by shading, is less than
the line width. Test 2 demonstrates the precision of the calculated ROI for two
closely spaced loci, µ1 and µ2, as the spacing between them is increased. In
this case, muMerge (c) transitions from a single loci to two distinct loci more
gradually and (d) the estimated ROI widths do not deviate from the expected
value. In all cases, expected value and variance for simulations is indicated by
grey lines and shading, respectively. For further detail on the results of Test 1
and 2 and how the simulations were performed, see Supp Fig 4 and methods
section 4.3.1.
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Figure 3: TFEA improves the detection of p53 following Nutlin-3a
treatment. (a) Application of the MD-Score, MDD-Score, and TFEA to GRO-
Seq data in HCT116 cells with 1hr Nutlin or DMSO treatment [1]. Cutoffs
determined by comparing untreated replicates (see Supp Fig 9). (b) Application
of the MD-Score, MDD-Score, and TFEA to PRO-Seq data in MCF10A cells
with 1hr Nutlin or DMSO treatment. (c) Motif displacement distribution (as
heatmap) of TP53 motif instances within 1.5kb of all ROI in either DMSO
(blue) or Nutlin-3a (red). (d) Percentage overlap of TP53 motifs within 150bp
in DMSO and Nutlin-3a ROIs. (e) Similar to (c) but in MCF10A cells.

Figure 4: TFEA balances TF positional and differential signal. (a)
Optimal cutoffs are determined using the mean true positive rate (TPR; green)
and mean false positive rate (FPR; orange) across different signal and background
levels as a function of varying the threshold cutoff. (b) F1-score of AME and
TFEA for varied signal and background, using optimal AME cutoff 1e-30 and
TFEA cutoff 0.1. (c) Difference in F1-score across all simulations (n=121).
TFEA outperforms AME in 26% of cases (red) whereas AME outperforms TFEA
in 21% of cases (blue). (d) F1-scores and (e) difference in scores for highest
signal tested (10% signal), now varying the standard deviation of the signal and
background. See Supp Fig 14 for more details on simulations.

Figure 5: TFEA dissects the temporal dynamics of infection. (a) Anal-
ysis of LPS timeseries CAGE data[21, 9] using AME (top) or TFEA (bottom).
Trajectories of activity profiles shows LPS triggers immediate activation of the
NF-κβ complex (TF65/RelB/NFKB1; yellow), observable at 15min (blue arrow).
TFEA detects a concomitant down regulation of a set of transcription factors,
exemplified here by TYY1 (purple). TFEA also resolves subsequent dynamics
(green bracket) of ISGF3 activation (containing IRF9/STAT1/STAT2; red lines).
(b) Schematic depicting the molecular insights gained from TFEA analysis. See
Supp Fig 16 for more analysis.

Figure 6: TFEA captures rapid dynamics of glucocorticoid receptor
(GR) following treatment with dexamethasone. (a) TFEA correctly iden-
tifies GR from time series ChIP data on the histone acetyl-transferase p300,
H3K27ac and DNase I. No signal is observed in the negative control H3K9me3.
TFEA correctly shows a temporal lag in H3K27ac signal (yellow arrow). (b)
Known cellular dynamics of GR induced by dexamethasone. (c) Mechanistic
and temporal insights gained by performing TFEA analysis, question marks
indicate datasets where earlier time points were not available to resolve temporal
information.
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Chapter 4

Mediator Kinases and the Interferon Response

4.1 Preamble

While Mediator kinases have been shown to be important in disease, the role of Mediator

kinase activity (in disease or normal cellular function) is not well understood. Furthermore, the

extent to which both Mediator kinases (CDK8 and CDK19) serve redundant or non-redundant

roles is an active area of study. Previously, studies had shown that Mediator kinases can serve as

downstream regulators of signaling pathways. In support of this, transcription factors (TFs) are a

large portion of known mediator targets (Poss 2016). Among the TF targets of Mediator kinases is

STAT1, the main downstream effector of the IFN-γ signaling pathway. This study thus sought to

probe the kinase dependent and independent roles of CDK8 and CDK19 within the IFN-γ response.

4.1.1 Significance

The IFN-γ signaling pathway is involved in the response to bacterial and viral infection. This

essential cellular process is highly regulated as hyper or hypo activation can lead to autoimmune

disease or immunocompromise. Furthermore, this pathway plays essential roles in cancer as this

represents a major method for tumor surveillance. The IFN-γ signalling pathway works by detection

of IFN-γ through cell surface receptors which causes a signaling cascade ultimately leading to the

phosphorylation of TF signal transducer and activator of transcription 1 (STAT1) which triggers

its translocation into the nucleus where it effects changes in target gene transcription.

Mediator is a large protein complex responsible for integrating signals from TF binding events
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to the pre-initiation complex (PIC) containing RNA Polymerease II (RNAPII). Mediator kinases

(CDK8 and CDK19) can reversibly associate with Mediator and are known to play a role in disease,

specifically cancer. This study probed the transcriptional and gene expression effects of inhibiting

Mediator kinase activity through small molecule addition or chemical genetics and depleting protein

abundance using inducible knockouts or knockdowns. Surprisingly, CDK8 and CDK19 played non-

redundant roles within the IFN-γ signaling pathway with the response affected by CDK8 activity

and/or CDK19 protein. Further, this study showed that CDK19 knockdown significantly affected

the cellular response to infection.

The results of this study were published on September 5, 2019 in Molecular Cell Volume 76,

Issue 3, Pages 485-499 (https://doi.org/10.1016/j.molcel.2019.07.034).

4.1.2 Contributions

The majority of this work was performed by Dr. Steinparzer. I began working on this project

when Dr. Steinparzer visited the lab for several months (a year?). She was a graduate student

at the time interested in performing nascent sequencing on mouse embryonic fibroblasts (MEFs)

treated with IFN-γ and the Mediator kinase inhibitor CA. I loosely guided Dr. Steinparzer on

how to perform nuclear isolation and the GRO-Seq protocol, mainly answering questions related to

established protocols. Following her departure from the lab and the sequencing of all her samples,

I began a preliminary analysis on the MEF GRO-Seq data. I performed DE-Seq analysis and

pause analysis via the quantification of a pause index (PI). I found that the PI of IFN-γ genes was

elevated in cells treated with IFN-γ and CA compared to those treated with IFN-γ and DMSO.

Dr. Sedlyarov then performed the final analysis confirming these results.

Dr. Steinparzer then performed many experiments including an array of shRNA knockdown

RNA-Seq experiments showing that the IFN-γ response could be affected by CDK8 inhibition and

CDK19 protein knockdown. Additionally, Dr. Levandowski along with Dr. Galbraith, and Dr.

Andyrsik (others?) performed PRO-Seq experiments in human HCT116 cells. I, along with Dr.

Sedlyarov, processed the PRO-Seq data (with Dr. Sedlyarov also processing the RNA-Seq data).
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Using this data and the previous MEF GRO-Seq data, I performed a modified version of the MD-

Score approach using only the top 20% of significantly differentially transcribed bidirectionals (more

details in method section). I found that upon induction with IFN-γ both MEFs and HCT116 cells

exhibited activation of the canonical STAT and IRF motifs. Upon simultaneous treatment with

CA, these TFs were no longer activated (or activated to a lesser extent) after IFN-γ treatment.

Finally, I performed all of the GSEA analyses in the paper and produced raw data snapshots of

key genes that appear in the supplement.

This project was an international collaboration of many scientists resulting in a rigorous probe

into the functions of both Mediator kinases within the IFN-γ response. The published manuscript

follows.
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SUMMARY

Transcriptional responses to external stimuli remain
poorly understood. Using global nuclear run-on fol-
lowedbysequencing (GRO-seq)andprecisionnuclear
run-on sequencing (PRO-seq), we show that CDK8 ki-
nase activity promotes RNA polymerase II pause
release in response to interferon-g (IFN-g), a universal
cytokine involved in immunity and tumor surveillance.
TheMediatorkinasemodulecontainsCDK8orCDK19,
which are presumed to be functionally redundant. We
implemented cortistatin A, chemical genetics, tran-
scriptomics, and other methods to decouple their
function while assessing enzymatic versus structural
roles. Unexpectedly, CDK8 and CDK19 regulated
different gene sets via distinct mechanisms. CDK8-
dependent regulation required its kinase activity,
whereas CDK19 governed IFN-g responses through
its scaffolding function (i.e., it was kinase indepen-
dent). Accordingly, CDK8, notCDK19, phosphorylates
the STAT1 transcription factor (TF) during IFN-g stim-
ulation, andCDK8 kinase inhibition blocked activation
of JAK-STAT pathway TFs. Cytokines such as IFN-g
rapidlymobilize TFs to ‘‘reprogram’’ cellular transcrip-
tion; our results implicate CDK8 and CDK19 as essen-
tial for this transcriptional reprogramming.

INTRODUCTION

Understanding how pathway-specific transcriptional responses

are controlled remains an important but challenging endeavor.

The transcriptional response to the ubiquitously acting cytokine

interferon-g (IFN-g) protects against bacterial and viral infection

and is indispensable for tumor surveillance (Schneider et al.,

2014). Whereas the basic signaling components of the IFN-g

pathway are defined, the chromatin-associated processes that

adjust the transcriptional output to physiological needs are

incompletely understood.

Upon IFN-g binding to its receptor, the tyrosine kinases JAK1

and JAK2 phosphorylate the transcription factor (TF) signal

transducer and activator of transcription 1 (STAT1), causing its

nuclear translocation (Schneider et al., 2014). STAT1 is tightly

controlled to prevent pathologies associated with hyper- or

hypo-activation. An important control mechanism targets the

JAKs in the cytoplasm (Schneider et al., 2014); another layer of

control occurs in the nucleus. For example, STAT1 promoter oc-

cupancy is limited by negative feedback that initiates once pro-

ductive transcription complexes have been established (Wiesa-

uer et al., 2015). Chromatin-associated STAT1 is also regulated

by phosphorylation of its activation domain (AD) at residue S727

(Sadzak et al., 2008; Wen et al., 1995). This physiologically

important modification adjusts the transcriptional output in

gene-specific ways (Bancerek et al., 2013).

The RNA polymerase II (RNAPII) enzyme transcribes all pro-

tein-coding and most non-coding RNAs in the human genome,

and Mediator appears to be required to activate RNAPII function

genome-wide (Allen and Taatjes, 2015). The mammalian Medi-

ator complex consists of 26 subunits and a 600-kDa, four-sub-

unit kinase module consisting of MED12, MED13, CCNC, and

CDK8 (or CDK19) that can reversibly associate withMediator (Al-

len and Taatjes, 2015). Consequently, CDK8 and CDK19 are

considered Mediator-associated kinases. CDK8 and CDK19

are highly similar (77% amino acid sequence identity) paralogs,

and each appears to associate in a mutually exclusive fashion

with the Mediator kinase module (Galbraith et al., 2013).
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The transcriptional effects of Mediator kinases are generally

cell-type and context specific (Galbraith et al., 2013; Johannes-

sen et al., 2017). These characteristics are consistent with the

fact that sequence-specific, DNA-binding TFs represent a major

class of proteins that are targeted by CDK8 and CDK19 (Poss

et al., 2016), and CDK8 and/or CDK19-dependent phosphoryla-

tion of these TFs has been shown to alter TF activity in a fewwell-

studied cases (Bancerek et al., 2013; Nitulescu et al., 2017).

Notably, STATs appear to represent a more common target of

Mediator kinases, as they have been shown to be phosphory-

lated by CDK8 and/or CDK19 in diverse cell lineages (Bancerek

et al., 2013; Nitulescu et al., 2017; Poss et al., 2016). These find-

ings suggest that Mediator kinase regulation of STAT TF function

may be a common theme in biology.

Prior work has implicated Mediator kinases as promising tar-

gets for therapeutic manipulation of cytokine responses (Ban-

cerek et al., 2013; Chen et al., 2017; Johannessen et al., 2017;

Nitulescu et al., 2017). These studies have focused on CDK8

and used knockdown approaches. Thus, the role of CDK19

versus CDK8 was not assessed, and the requirement for the ki-

nase activity per se (i.e., in contrast to the physical presence of

CDK8) remained undefined. Among the Mediator kinase inhibi-

tors that have been characterized (Dale et al., 2015; Johannes-

sen et al., 2017; Koehler et al., 2016), the natural product

cortistatin A (CA) stands out based upon its potency and high

selectivity for CDK8 and CDK19 (Pelish et al., 2015). Kinome-

wide screens revealed essentially no off-target kinase inhibition,

even at concentrations that were orders of magnitude higher

than its in-vitro-measured Kd (0.2 nM) (Pelish et al., 2015).

Here, we used CA in combination with chemical genetics and

conditional knockout or knockdownmethods to thoroughly eval-

uate the regulatory roles of CDK8 and CDK19 in the context of

IFN-g signaling and antiviral responses. Our results define ki-

nase-specific and kinase-independent roles for each and estab-

lish CDK8 and CDK19 as essential but nonredundant regulators

of IFN-g transcriptional responses.

RESULTS

Mediator Kinase Activity Is a Gene-Selective Regulator
of IFN-g-Stimulated Transcription
Our previous study demonstrated that CDK8 controlled tran-

scriptional responses to IFN-g (Bancerek et al., 2013), but it

remained unclear whether its effects were kinase dependent or

kinase independent. To address this question, we employed

CA, a potent and highly selective inhibitor of the Mediator ki-

nases CDK8 and CDK19 (Pelish et al., 2015). As expected,

IFN-g-stimulated phosphorylation of STAT1 at Y701 was not

affected by CA treatment, whereas CA inhibited IFN-g-induced

phosphorylation of STAT1 S727 (Figure 1A), consistent with pre-

vious findings in human cells (Bancerek et al., 2013; Nitulescu

et al., 2017; Pelish et al., 2015).

To investigate the effects of CDK8 and CDK19 kinase activity

on the transcriptome, mouse embryonic fibroblasts (MEFs) were

treated for 1 h with CA (100 nM, or DMSO control) followed by

stimulation with IFN-g for 6 h. Ribosomal RNA-depleted total

RNA from these cells was subjected to RNA sequencing (RNA-

seq); expression (fragments per kilobase million [FPKMs]) for

exonic (i.e., mRNA) and intronic (i.e., pre-mRNA) reads were

calculated separately, as described previously (Madsen et al.,

2015), with modifications (see STAR Methods). Principal-

component analysis (PCA) and analysis of counts normalized

for library size and composition (Love et al., 2014) revealed

that replicate 1 of an IFN-g-stimulated triplicate was an outlier

(Figures S1A, left panel, and Figure S1B) and was omitted from

subsequent analyses.

Treatment of MEFs for 6 h with IFN-g increased the mRNA

levels of 221 genes (log2-fold-change [lfc] R 1; adjusted p value

[padj] < 0.05; FPKM R 1) and downregulated mRNA levels of

only 3 genes (lfc%�1; padj < 0.05; FPKMR 1; Figure 1B; Table

S1A). Similar numbers and largely overlapping sets of genes

were induced by IFN-g at the pre-mRNA level (Figures 1C and

S1C; Table S1B), indicating that the increased mRNA levels

resulted not from changes in mRNA stability but rather from

transcriptional stimulation by IFN-g, as reported previously (Ban-

cerek et al., 2013; Dolken et al., 2008). Of the 221 genes induced

by IFN-g, 38 were less induced (lfc < 0, padj < 0.05) and 7 more

strongly induced (lfc > 0, padj < 0.05) in cells treatedwith CA (Fig-

ure 1D; Table S1A). Comparable results were obtained at the

pre-mRNA level (31 and 5, respectively; Figure 1E; Table S1B).

As expected, CA treatment did not affect cell viability within

the time frame of these experiments (Figure S1D). Together,

these results indicated that inhibition of Mediator kinase activity

primarily reduced IFN-g-stimulated transcription but had gene-

selective effects.

Mediator Kinases Act in Part through STAT1 S727
Phosphorylation
STAT1 S727 is an established CDK8 kinase target (Bancerek

et al., 2013; Pelish et al., 2015). To find out whether the effects

of CA on induction of IFN-g-regulated genes were dependent

on STAT1 S727 phosphorylation by Mediator kinases, we

compared responses of MEFs derived from STAT1 S727A

knockin mice (Bancerek et al., 2013) with those expressing

wild-type (WT) STAT1. Stimulation of S727A MEFs with IFN-g

(3 h) induced a robust response (Figures 1F and S1E; Table

S2). Compared to WT MEFs, the induction of many IFN-g target

genes was altered in S727AMEFs (Figure 1G; Table S2), consis-

tent with previous studies (Bancerek et al., 2013). CA treatment

predominantly decreased induction in both WT and S727A

MEFs (Figures S1F and S1G; Table S2), andmost of the CA-sen-

sitive genes were similarly affected in both WT and S727A MEFs

(Figure 1H; Table S2). These data indicate that Mediator kinases

act not only through STAT1 but also through other proteins to

help regulate the transcriptional response to IFN-g.

Mediator Kinase Inhibition Increases RNAPII Pausing at
IFN-g-Regulated Genes
Given that CA treatment modulated IFN-g-stimulated transcrip-

tion (Figure 1), we asked whether CA effects could be linked to

any specific stage of transcription. We employed global nuclear

run-on followed by sequencing (GRO-seq), a well-testedmethod

that detects actively transcribing polymerases and measures

nascent transcription, genome-wide (Core et al., 2008). A short

stimulation (30 min) with IFN-g allowed us to assess the effects
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of Mediator kinase activity on the primary (i.e., STAT1-driven)

IFN-g response.

We completed biological replicate GRO-seq experiments in

MEFs following 30-min treatment with IFN-g upon pretreatment

with CA (100 nM, 1 h, or DMSO control), as with mRNA analyses.

Gene set enrichment analysis (GSEA) confirmed induction of

expected IFN-g-responsive gene sets, with significant enrich-

ment (false discovery rate [FDR] q-value < 0.05) of IFN-g and

JAK-STAT signaling pathways (Figure 2A; Table S3A). The total

number of genes induced after 30-min IFN-g stimulation was

200 (lfc > 0; padj < 0.05; Table S4A), similar to the number of

genes induced at the mRNA level after 6 h (Figure 1B). The over-

lap between IFN-g-induced genes in GRO-seq (30 min IFN-g)

and RNA-seq (6 h IFN-g) experiments comprised 51 genes (Fig-

ure S2A). CA treatment resulted in reduced induction of a large

proportion of IFN-g target genes (Figure 2B; Table S4B), consis-

tent with CA effects on mRNA levels during 6-h stimulation with

IFN-g (Figures 1D and 1E).

The GRO-seq read counts across Irf1 (RefSeq GenBank:

NM_008390), a STAT1 target gene (Bancerek et al., 2013), re-

vealed RNAPII pausing prior to IFN-g stimulation, as evident

from pausing index (PI) of 2.03 calculated from pooled replicates

(see STAR Methods) (Figure 2C; Table S4C). Overlay of reads

confirmed similar changes in both replicates (Figure S2B).

Paused RNAPII was released upon IFN-g stimulation, as re-

vealed by almost evenly distributed read counts across the Irf1

gene and concomitant reduction in PI (PI = 0.69; Figures 2C

and S2B). However, Mediator kinase inhibition with CA blocked

this process (PI = 1.78; Figures 2D and S2B; Table S4C). The CA-

mediated increase in PI correlated with lower induction of Irf1

transcripts (199.5 versus 117.5 transcripts per million reads

[TPM]; Figure 2D) and IRF1 protein (Figure S2C). Similar regula-

tion was observed also for Tap1, another STAT1 target gene

(Bancerek et al., 2013) (PI = 5.6 for unstimulated control, PI =

1.82 for 30-min IFN-g, and PI = 2.83 for 30-min IFN-g plus CA;

Table S4C).

The CA-mediated PI increase at Irf1 suggested that Mediator

kinase inhibition prevented release of RNAPII pausing during

IFN-g stimulation. In agreement, transcriptome-wide analysis of

CA-treated IFN-g-stimulated samples versus IFN-g-stimulated

A B

C D E

F
G H

Figure 1. Mediator Kinase Inhibition Im-

pairs IFN-g-Stimulated Transcription in

Gene-Selective Ways

(A) CA inhibits IFN-g-induced STAT1 AD phos-

phorylation at S727. WT MEFs (±100 nM CA, 1-h

pretreatment) were subjected to 45-min IFN-g

stimulation followed by western blot against

phosphorylated STAT1 at S727 (pS727) or Y701

(pY701) and total STAT1, CDK8, CDK19, or

tubulin. STAT1 bands correspond to STAT1a or

STAT1b isoforms.

(B) Gene expression changes (mRNA) inWTMEFs

upon 6-h IFN-g treatment (blue, padj < 0.05; red,

padj > 0.05). Genes with padj < 0.05, log2 fold

change (lfc) R 1, FPKM stimulated R 1 were re-

garded as IFN-g induced (221 genes).

(C) Overlap of genes induced after 6-h IFN-g at

mRNA versus pre-mRNA levels.

(D and E) Effects of CA on expression of IFN-g-

induced genes. WT MEFs (±100 nM CA, 1-h pre-

treatment) were stimulated with IFN-g (6 h)

followed by RNA-seq. The numbers of differen-

tially expressed (upregulated: lfc > 0, padj < 0.05;

downregulated: lfc < 0, padj < 0.05) IFN-g-induced

genes (defined in B) at mRNA (D) and pre-mRNA

(E) level are shown.

(F–H) Mediator kinases act in part through STAT1

S727 phosphorylation.

(F) Gene expression (mRNA) changes in S727A

MEFs upon 3-h IFN-g treatment.

(G) Effects of STAT1 S727A mutation on IFN-g-

induced genes: genes induced by IFN-g in WT

MEFs are upregulated (55 genes, lfc > 0, padj <

0.05), downregulated (78 genes, lfc < 0, padj <

0.05), or unaffected (32 genes) in S727A MEFs.

(H) Overlap of IFN-g-induced genes down-

regulated (lfc < 0, padj < 0.05) by CA (100 nM

CA, 1-h pretreatment) in WT MEFs versus

S727A MEFs.
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C D

E F G

H I J

Figure 2. Mediator Kinase Inhibition Increases RNAPII Pausing

(A–F) MEFs pretreated with CA (100 nM, 1 h) or DMSO (Ctrl) were stimulated with IFN-g (30 min; IFN30) or unstimulated (IFN0) and subjected to GRO-seq.

(A) Moustache plot of false discovery rate (FDR) versus normalized enrichment score (NES) based upon GSEA of GRO-seq data for IFN30 versus IFN0. Dashed

line, 0.05 FDR. Only positively enriched gene sets are found at FDR < 0.05. Gene sets for IFN-g and JAK-STAT pathways are highlighted.

(B) Effects of CA on induction of IFN-g target genes (lfc R 1, padj < 0.05).

(legend continued on next page)
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DMSO controls revealed a shift to higher PIs in CA-treated cells

(Figures 2E and S2D; Table S4C). Analysis of PIs transcrip-

tome-wide by the Mann-Whitney U test (R Core Team, 2017)

also confirmed that CA treatment significantly increased PIs dur-

ing IFN-g stimulation (PI = 5.31versus 3.82; Figure 2F). PI analysis

of the gene group induced by IFN-g revealed decreased pausing

upon stimulation (Figure S2E), consistent with PI changes at Irf1

(Figure 2C). Interestingly, 19 of the 38 IFN-g-induced genes

whose mRNA levels were downregulated by CA (Figure 1D)

showed a corresponding increase in PI with CA treatment (Table

S4D). These data demonstrate Mediator kinase-dependent

RNAPII pause release during IFN-g-induced transcription.

Chemical Genetics Confirms RNAPII Pause Regulation
by CDK8 Kinase
We next employed a CDK8-analog-sensitive (CDK8as) HCT116

human cell line (Galbraith et al., 2017), which enabled us to

define CDK8-specific effects while testing in a different model

system (i.e., human versus mouse). WT and CDK8as cells were

induced with IFN-g for 45 min, followed by nuclei isolation for

PRO-seq analysis (Kwak et al., 2013). In addition to unstimulated

controls, we completed experiments in the presence or absence

of the CDK8as inhibitor 3MB-PP1 (Galbraith et al., 2017). As ex-

pected, IFN-g induced IFN-responsive gene sets in HCT116

cells (Figure 2G; Table S3B). The CDK8as cells behave as hypo-

morphs (Galbraith et al., 2017); consistently, IFN-g response in

CDK8as cells was diminished compared toWT cells (Figure S2F;

Table S3B). Furthermore, inhibition of CDK8 kinase activity with

the ATP analog 3MB-PP1 strongly reduced the IFN-g response

in CDK8as cells as compared to WT cells treated with 3MB-

PP1 (Figure 2H; Table S3B). Reduced induction of IFN-g

response genes with inhibition of CDK8was similar to the effects

in IFN-g-stimulated MEFs treated with CA. Heatmaps from the

PRO-seq data demonstrated that 3MB-PP1 treatment did not

impair the induction of IFN-g response genes in WT cells; how-

ever, 3MB-PP1 caused reduction of the hypomorph IFN-g

response in CDK8as cells (Figure 2I; Tables S5A and S5B).

In IFN-g stimulated MEFs, we observed a correlation between

increased PI and reduced gene expression in CA-treated cells

(Table S4D). Consistent with these results, a PI analysis from

the PRO-seq data in IFN-g stimulated HCT116 cells showed a

similar trend upon CDK8 kinase inhibition during the IFN-g

response (Figures 2J and S2G; Table S5C). In the absence of

IFN-g stimulation, CDK8 inhibition did not increase the PI in

this group of genes (Figure S2H; Table S5C). Taken together,

the data summarized in Figure 2 suggest that (1) Mediator kinase

activity contributes to release of paused RNAPII at IFN-g-

induced genes, (2) inhibition of Mediator kinases increases

RNAPII pausing in human cells andMEFs, and (3) reduced induc-

tion of IFN-g target genes upon Mediator kinase inhibition corre-

lates with defects in RNAPII pause release.

Enhancer RNA (eRNA) Transcription Implicates Specific
TFs and Mediator Kinases in the IFN-g Response
Enhancer-associated transcription appears to represent the

most rapid transcriptional response to a stimulus (Arner et al.,

2015). Enhancer activity correlates with the expression of unsta-

ble, bidirectional transcripts defined as eRNAs. Although the

function of eRNAs remains unclear, their abundance can infer

TF activity (Azofeifa et al., 2018). For instance, bidirectional

eRNAs originate around sites of TF binding, and if a consensus

sequence is defined, these sites can reliably predict active TFs

(or TFs being repressed) at the time of the analysis (Azofeifa

et al., 2018).

The eRNA profile associated with IFN-g response has not

been addressed, nor has the role of Mediator kinases in eRNA

expression. To this end, we measured TF motif displacement

(MD) across eRNAs in MEFs, as described previously (Azofeifa

et al., 2018), with minor improvements (see STAR Methods).

Quantifying TF activity associated with the IFN-g response (no

IFN-g versus 30-min IFN-g), we observed a significant increase

in MD score of IFN-related TF motifs (STAT1 and STAT5B; Fig-

ures 3A and S3A; Table S6A). The data indicated that eRNA tran-

scripts originating from these TF motifs were induced following

IFN-g treatment. In contrast, eRNAs associated with these

same TF motifs (i.e., STAT1 and STAT5) were not induced by

IFN-g if Mediator kinase activity was inhibited by CA (Figures

3B and S3A; Table S6B). These results suggest that IFN-g-

responsive STAT TFs are activated, at least in part, through

Mediator kinase function. In agreement, induction of IFN-g

response genes is reduced in CA-treated MEFs (Figure 1).

Similar to results in MEFs, PRO-seq data collected in control

or IFN-g-stimulated (45 min) HCT116 cells revealed activation

of TFs known to be involved in the IFN response (e.g., STAT1/2

and IRF1-3; Figures 3C and S3B; Table S6C); moreover,

eRNAs associated with these TFs were not induced by IFN-g

(C and D) Plot of GRO-seq reads (pooled replicates) at Irf1 locus for IFN0.Ctrl and IFN30.Ctrl (C) as well as IFN30.Ctrl and IFN30.CA (D). Pausing indices (PIs) and

transcripts per million reads (TPM; nt 501 to transcript end) are indicated.

(E) Empirical cumulative density function (ECDF) plot of PI distribution (transcriptome-wide) under IFN30.Ctrl (red) and IFN30.CA (blue) conditions. Kolmogorov-

Smirnov test p value < 2.2e-16.

(F) Median PI and statistical assessment of PI changes for all expressed genes (RefSeq). Median PI value is shown for each condition (red is the highest). Mann-

Whitney U test, p value not significant (ns) R 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

(G–J) HCT116WT and CDK8as cells were stimulated with IFN-g (IFN) for 45min (or unstimulated, PBS) and simultaneously treated with 10 mM3MB-PP1 (3MB) or

DMSO, and subsequently subjected to PRO-Seq.

(G) GSEA for IFN-g response of WT HCT116 cells (DMSO.IFN versus DMSO.PBS).

(H) GSEA for CDK8 inhibition in IFN-g-stimulated HCT116 cells (CDK8as 3MB.IFN versus WT.3MB.IFN).

(I) Effects of CDK8 inhibition (CDK8as, 3MB) on expression of IFN-g-induced genes compared toWT cells. Both IFN-g-stimulated (IFN) and unstimulated (PBS) as

well as 3MB- and control (DMSO)-treated cells were analyzed. IFN-g-induced genes (N = 83): padj < 0.1, lfc > 1 for WT DMSO.IFN versus WT DMSO.PBS using

gene body (+301 to end) counts.

(J) PI distribution during IFN-g response upon CDK8 inhibition (CDK8as 3MB.IFN, blue) versus uninhibited control (WT 3MB.IFN, red). Distribution shown for

genes downregulated by CDK8 inhibition (N = 956, padj < 0.1, log2 fold change < 1 for CDK8as 3MB.IFN versus WT 3MB.IFN).
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in CDK8-inhibited cells (Figures 3D and S3B; Table S6D). These

results suggest that Mediator kinase function during IFN-g

response is conserved in mouse and human cells and specif-

ically identifies a role for CDK8 kinase activity in human cells.

In contrast to MEFs, numerous other TFs (i.e., beyond STATs

and IRFs) were significantly activated with IFN-g treatment in

HCT116 cells, and these also lacked evidence of activation

upon CDK8 kinase inhibition (Figures 3C and 3D; Tables S6C

and S6D). Such results suggest novel roles for these TFs in

the IFN-g response. Collectively, the data from Figure 3 (1)

implicate a set of TFs that are rapidly activated upon IFN-g stim-

ulation in mouse and human cells and (2) suggest that Mediator

kinase activity is required for proper activation of these IFN-g-

induced TFs.

CDK8, Not CDK19, Is the Major IFN-g-Activated STAT1
AD Kinase
CA revealed Mediator-kinase-dependent effects on IFN-g-

induced genes (Figures 1 and 2) and experiments with CDK8as

cells confirmed the involvement of CDK8 kinase activity (Fig-

ure 2); however, the role of CDK19 remained unclear, because

CA inhibits both CDK8 and CDK19 (Pelish et al., 2015). To

address the individual contribution of CDK8 and CDK19, we

used immortalized MEFs derived from CreERT2-Cdk8fl/fl ani-

mals. These cells endogenously express CDK8 and CDK19

and allow conditional depletion of each (see below).

To address the role of CDK8, CreERT2-Cdk8fl/fl MEFs (referred

to as CDK8fl-MEF) were treated with 4-hydroxytamoxifen

(4OHT) for 3 h followed by 48-h recovery without 4OHT. This

resulted in inducible Cdk8 knockout (CDK8-iKO) (Figure S4A)

and loss of the CDK8 protein (Figure 4A). As expected,

CDK8fl-MEFs treated with 4OHT exhibited decreased IFN-g-

induced S727 phosphorylation of STAT1 (Figure 4A), whereas

STAT1 Y701 phosphorylation was not affected, consistent with

previous results (Pelish et al., 2015). CDK19 protein levels re-

mained unchanged inCdk8-deleted cells (Figure 4A), suggesting

it was not effectively compensating for CDK8 as a STAT1 AD

kinase.

A B

C D

Figure 3. eRNA Transcription Predicts Activation of Specific TFs and Role of Mediator Kinases in the IFN-g Response

(A–D) Motif displacement (MD) score during the IFN-g (30 min) response in MEFs (A and B) and HCT116 cells (C and D), derived from GRO-seq (MEFs) and PRO-

seq (HCT116) data.

(A) MD score difference for TFs in IFN-g-stimulated (IFN30) versus unstimulated (IFN0) MEFs (IFN30 versus IFN0). STAT1 and STAT5b motifs are significantly

enriched upon IFN-g stimulation.

(B) Effect of CA treatment on MD score during the IFN-g response (IFN30.CA versus IFN0). STAT1 and STAT5b motifs enriched in (A) are not enriched upon CA

treatment.

(C) MD score difference for TFs in IFN-g-stimulated (IFN) versus unstimulated (PBS) WT HCT116 cells with 3MB-PP1 treatment (3MB.IFN versus 3MB.PBS). TF

motifs for IFN and JAK-STAT pathways (IRF1, IRF2, IRF3, and STAT2) are significantly enriched upon IFN-g stimulation.

(D) Effect of CDK8 inhibition on MD score during the IFN-g response (CDK8as 3MB.IFN versus 3MB.PBS). TF motifs for the IFN and JAK-STAT pathways (IRF1,

IRF2, IRF3, and STAT2) enriched in (C) are not enriched upon CDK8 inhibition.
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The role of CDK19 in IFN-g response was assessed via small

interfering RNA (siRNA)-mediated Cdk19 knockdown in CDK8fl-

MEFs. This approach was adopted instead of Cdk19 knockout

for several reasons. First, it allowed the same (i.e., isogenic) cells

to be used for CDK8 knockout and CDK19 depletion, thereby

avoiding differences arising from undefined genetic heterogene-

ities in different cell lines. Second, this inducible depletion sys-

tem minimized risks of long-term effects (e.g., adaptation and

compensation) in cell populations with stable deletions (Rossi

et al., 2015). Third, this strategy was justified by our attempts

to generate MEFs bearing a stable Cdk19 deletion; in some

cases, deletion of Cdk19 in CDK8fl-MEFs caused elevation of

CDK8 protein levels (Figure S4B). By contrast, such compensa-

tory effects were not observed if cells were only transiently

depleted of CDK19 (Figure 4B).

Knockdown of Cdk19 by treatment of CDK8fl-MEFs with

CDK19-siRNA (referred to as siCDK19) resulted in >90% reduc-

tion of CDK19 protein levels (Figures 4B and S4C). Notably, IFN-

g-induced STAT1 S727 phosphorylation was not reduced by

Cdk19 knockdown, suggesting that CDK19 plays no role in

phosphorylation of STAT1 AD in the presence of CDK8 (Fig-

ure 4B). To more directly address a potential redundancy of

CDK8 and CDK19, CDK8fl-MEFs were treated with 4OHT,

siCDK19, or both, and IFN-g-induced STAT1 S727 phosphoryla-

tion was examined (Figure 4C). Similar to experiments shown in

Figures 4A and 4B, 4OHT (i.e., CDK8-iKO), but not siCDK19

treatment, consistently reduced IFN-g-induced S727 phosphor-

ylation (Figure 4C; replicate and quantitation in Figure S4D).

Treatment with both 4OHT and siCDK19 was only slightly more

efficient in inhibition of IFN-g-induced S727 phosphorylation,

similar to treatment with CA (Figures 4C and S4D). Residual

S727 phosphorylation is likely caused by kinases not relevant

for the IFN-g pathway (e.g., p38 mitogen-activated protein ki-

nase [MAPK]; Kovarik et al., 1999). Neither the inducible deletion

of Cdk8 nor knockdown of Cdk19 caused major changes in the

expression of other subunits of the Mediator kinase module

(i.e., MED12, MED13, and CCNC) (Figure S4E).

The importance of CDK8 compared to CDK19 in IFN-g-

induced STAT1 S727 phosphorylation was further examined us-

ing two different human cell lines expressing analog-sensitive

CDK8 (CDK8as; F97G) instead of WT CDK8: HCT116-CDK8as

(Galbraith et al., 2017) and a HAP1-CDK8as cell line (see STAR

Methods). The CDK8as version in HAP1 cells was sensitive to

the ATP analog NM-PP1 (Figures S4F and S4G), similar to the re-

ported inhibition of CDK8as in HCT116 cells by 3MB-PP1 (Gal-

braith et al., 2017). As expected, treatment of HAP1-CDK8as

and HCT116-CDK8as cells with different inhibitory ATP analogs

(NM-PP1 and 3MB-PP1, respectively) blocked IFN-g-induced

STAT1 S727 phosphorylation, whereas the analogs had no effect

inWT cells (Figures 4D, 4E, and S4H). Taken together, the data in

Figure 4 implicate CDK8, but not CDK19, as the STAT1 AD ki-

nase in the IFN-g pathway in both mouse and human cells.

A B

C

D

E

Figure 4. CDK8, Not CDK19, Is the Major STAT1 AD Kinase in the

IFN-g Response

(A) Inducible CDK8 knockout (CDK8-iKO) in CDK8fl-MEFs using 4-hydrox-

ytamoxifen (4OHT) treatment. Cells were 4OHT treated to activate CreERT2 or

control treated, followed by IFN-g stimulation (45 min) and subsequent

western analysis using antibodies against phosphorylated STAT1 (pS727 or

pY701 STAT1) and total STAT1, CDK8, CDK19, and tubulin.

(B) siRNA knockdown of CDK19 (siCDK19). CDK8fl-MEFs were treated with

siCDK19 or non-targeting siCtrl followed by IFN-g stimulation and immuno-

blotting as in (A). Quantitative evaluation of blot is shown in Figure S4C.

(C) Effects of inducible CDK8 knockout (CDK8-iKO), CDK19 knockdown

(siCDK19), and Mediator kinase inhibition (CA) on IFN-g-induced STAT1 S727

phosphorylation. Treatments and immunoblotting as in (A) and (B). Note

siCDK19 had no effect on IFN-g-induced STAT1 S727 phosphorylation (lane 6

versus lane 3).

(D and E) Effects of CDK8 inhibition (analog-sensitive mutant CDK8as) on IFN-

g-induced STAT1 S727 phosphorylation.

(D) HAP1 cells expressing WT or CDK8as from the endogenous locus were

treated with NM-PP1 (10 mM, 4 h) or CA (100 nM, 1 h) or control treated before

stimulation with IFN-g (45 min). Extracts were analyzed as in (A). Note that

inhibition of IFN-g-induced STAT1 S727 phosphorylation by NM-PP1 was

comparable to that by CA.

(E) HCT116 cells expressing WT or CDK8as from the endogenous locus were

simultaneously treated with 3MB-PP1 (or DMSO control) and IFN-g for 45 min.

Extracts were analyzed as in (A).
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A Strategy to Decouple the Effects of CDK8 versus
CDK19: Kinase Function versus Protein Presence
The data in Figure 4 revealed distinct roles for CDK8 versus

CDK19 in STAT1 S727 phosphorylation. We next addressed

whether we could decouple CDK8- versus CDK19-dependent

effects on IFN-g-induced gene expression. We used the strategy

summarized in Figure 5A, which enabled inducible knockout of

CDK8 (CDK8-iKO) by 4OHT treatment, knockdown of CDK19

(siCDK19), or both (CDK8-iKO + siCDK19). CA treatment was

implemented as needed to decouple protein presence (CDK8

A B

C

D E F

Figure 5. CA Has No Effect on IFN-g-Regulated Transcription in the Absence of CDK8 and CDK19

(A) Experimental overview. RNA-seq experiments were completed using 3 replicates for each condition (8 conditions total; siCtrl, control condition).

(B) IFN-g-induced gene expression changes (mRNA) in siCtrl cells (siCtrl 3 h IFN versus siCtrl 0 h IFN).

(C) GSEA of IFN-g-induced changes in siCtrl cells (siCtrl 3 h IFN versus siCtrl 0 h IFN). Gene sets representing IFN and JAK-STAT pathways are highlighted.

(D) GSEA of CA effects on IFN-g-induced (3 h) changes in siCtrl cells (siCtrl CA IFN versus siCtrl IFN).

(E) CA effects on gene expression changes (mRNA) upon IFN-g stimulation (3 h) in siCtrl cells (siCtrl CA IFN versus siCtrl IFN).

(F) CA effects on gene expression changes (mRNA) in the absence of CDK8 and CDK19 during IFN-g stimulation (3 h) (siCDK19 CDK8-iKO CA IFN versus

siCDK19 CDK8-iKO IFN). Note that no genes were significantly (blue) up- or downregulated by CA.
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and/or CDK19) from enzymatic function. As before, CA treat-

ment (or DMSO controls) occurred 1 h prior to IFN-g stimulation.

For these experiments, IFN-g treatment lasted 3 h prior to

analysis.

After treatments, mRNA and pre-mRNA levels (three biological

replicates) were determined by RNA-seq (Table S7), as

described for 6-h IFN-g treatment (Figure 1). IFN-g treatment

almost exclusively upregulated gene expression, with induction

of 274 genes (lfc R 1; padj < 0.05; FPKM in IFN-g stimulated

samples R 1) and only 4 genes downregulated (lfc % 1; padj <

0.05; FPKM in IFN-g stimulated samples R 1) (Figure 5B). The

numbers of genes regulated at the pre-mRNA level were similar

and largely overlapping with mRNA gene sets implicating IFN-g

effects at the transcriptional level rather than post-transcriptional

regulation (Figure S5A). GSEA for IFN-g-stimulated versus unsti-

mulated datasets confirmed induction of IFN-g and JAK-STAT

pathways (Figure 5C; Table S3C). Moreover, the gene sets re-

vealed by GSEA (normalized enrichment score [NES] > 1.5;

FDR < 0.05) in IFN-g-stimulated versus unstimulated cells

showed a large overlap between GRO-seq (t = 30-min IFN-g)

and RNA-seq (t = 3-h IFN-g) experiments and consisted mostly

of IFN-g or IFN-g-related pathways (e.g., JAK-STAT, inter-

leukin-2 [IL-2], IL-4, and IL-6) (Figure S5B; Table S3D).

CA Does Not Affect Transcription in the Absence of
CDK8 and CDK19
To test whether CA effects on transcription were dependent on

the Mediator kinases, we analyzed CA effects during the IFN-g

response in MEFs devoid of both CDK8 and CDK19 (siCDK19

CDK8-iKO) compared to control MEFs (siCtrl). As expected,

CA negatively affected gene sets associated with the IFN-g

and JAK-STAT pathways and altered the genome-wide IFN-g

response in control MEFs (Figures 5D and 5E; Table S3E). In

contrast, CA did not significantly change the transcriptome in

the absence of CDK8 + CDK19, with or without IFN-g stimulation

(Figures 5F and S5C). Similar results were seen in CDK8

knockout cells (see below). These results reflect the high degree

of CA selectivity (Pelish et al., 2015) and also imply that CA does

not alter the biological function of other (i.e., non-kinase) tran-

scriptional regulatory proteins.

CDK8 and CDK19 are Nonredundant and
Mechanistically Distinct Transcriptional Regulators of
the IFN-g Response
To analyze effects of CDK8 and CDK19 during IFN-g response

and to distinguish kinase-dependent versus kinase-independent

functions, we generated RNA-seq comparisons among IFN-g-

induced genes from IFN-g-stimulated control (siCtrl) cell

populations. Comparisons were completed between the exper-

iments summarized in Figure 5A. A heatmap depicting genes

(N = 178) induced by IFN-g in control cells (siCtrl) (lfc R 1;

padj < 0.05; FPKM in IFN-g stimulated samples R 1) that were

differentially expressed (padj < 0.05) in at least one of the condi-

tions is shown in Figure 6A. The data revealed a similar, but not

identical, pattern of gene expression changes for Mediator ki-

nase inhibition in control cells (siCtrl CA versus siCtrl; Figure 6A,

line 1) and in the absence of CDK19 (siCDK19 CA versus

siCDK19; Figure 6A, line 2); furthermore, similar gene expression

changes were seen in the absence of CDK8 (siCtrl CDK8-iKO

versus siCtrl; Figure 6A, line 3). These results (Figure 6A, lines

1–3) suggested that Mediator kinase activity regulated IFN-g-

induced transcription specifically through CDK8, not CDK19.

The lack of significant effect of Mediator kinase inhibition in the

absence of CDK8 (siCtrl CDK8-iKO CA versus siCtrl CDK8-

iKO; Figure 6A, line 4) further supports this conclusion.

The pattern for CDK19 depletion was markedly different from

other conditions (siCDK19 versus siCtrl; Figure 6A, line 5), sug-

gesting that CDK19 plays distinct roles in regulation of transcrip-

tional responses to IFN-g. This was supported by limited overlap

of IFN-g-induced genes downregulated by CDK8 deletion

versus CDK19 knockdown (Figure S5D). Volcano plots corre-

sponding to heatmap comparisons are shown in Figures 6B–6F.

The distinct transcriptional effects of CDK19 knockdown

(siCDK19) on the IFN-g transcriptional response were apparent

also from GSEA comparisons (Table S3E). Genes downregu-

lated by CDK8-iKO (18 gene sets with NES < �1.5) versus

siCDK19 (19 gene sets) shared only 2 gene sets (Figure S5E;

Table S3E). Whereas IFN-g and JAK-STAT pathway gene sets

were identified in the CDK8-iKO (Figure S5F) and CA-treated da-

tasets (Figure 5D), these pathways were not observed in

siCDK19 gene sets; these gene sets included metabolic and

other inflammatory pathways (Figure S5G; Table S3E). Thus, in

agreement with the gene expression analyses summarized in

Figure 6, GSEA implicated CDK19 in the regulation of different

gene sets in IFN-g-treated cells. We note, however, that expres-

sion of several well-known IFN-g target genes such as Irf1

and Gbp2 was similarly affected by CDK8-iKO, siCDK19, or

CA (Table S7).

The data summarized in Figures 5 and 6 revealed that the

IFN-g response was differentially regulated by CDK8 and

CDK19, by distinct mechanisms. Regulation by CDK8 depended

primarily on its kinase activity whereas the effects of CDK19

appeared to be kinase independent.

CDK19 Is a Kinase-Independent Driver of the IFN-g
Antiviral Response
CCNC is required for Mediator kinase activity (Knuesel et al.,

2009; Li et al., 2014; Turunen et al., 2014), and we previously

established CCNC as important for cellular response to viral

infection (Bancerek et al., 2013). Because CCNC interacts with

CDK8 or CDK19 in a mutually exclusive manner (Galbraith

et al., 2013), these results did not distinguish between CDK8

and CDK19. However, the data shown in Figures 4 and S4 re-

vealed that STAT1 AD phosphorylation was mediated through

CDK8. Because STAT1 AD phosphorylation is required for the

induction of antiviral state by IFN-g (Bromberg et al., 1996; Hor-

vath and Darnell, 1996), this implicates CDK8 as an essential

activator of antiviral response, which is further supported by

CDK8-dependent effects on IFN-g-induced genes (Figures 6A

and S5F).

To test the role of CDK19 in the antiviral response, we used

methods similar to those used previously for CCNC (Bancerek

et al., 2013); specifically, we infected siCDK19 or siCtrl MEFs

(pre-stimulated for 24 h with serial dilutions of IFN-g) with vesic-

ular stomatitis virus (VSV) and assessed cell viability. Cells

depleted for CDK19 reproducibly displayed increased sensitivity
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to VSV infection compared to siCtrl-treated samples (Fig-

ure S6A). Calculation of the EC50 (IFN-g needed to prevent

50% cell death) revealed that cells depleted of CDK19 were

5-fold more sensitive to VSV infection than controls (EC50

0.925 versus 0.181; Figure 7A), demonstrating an important

role for the CDK19 protein in the antiviral response.

A B

C D

E F

Figure 6. Transcriptional Response to IFN-g Is Predominantly Executed by Kinase-Dependent Effects of CDK8 and Kinase-Independent

Effects of CDK19

(A–F) CDK8fl-MEFs were treated as described in Figure 5A and assessed by differential mRNA expression (3 biological RNA-seq replicates each).

(A) Heatmap summarizing mRNA expression changes caused by CA, CDK8 knockout, and CDK19 knockdown in a group of IFN-g-induced genes. Genes

induced by IFN-g (lfcR 1, padj < 0.05, FPKM stimulatedR 1) in siCtrl-treated CDK8fl-MEFs (siCtrl) were analyzed under the following conditions: CA treatment

(CDK8 + CDK19 inhibition), lane 1; CA treatment in the absence of CDK19 (i.e., CDK8 inhibition), lane 2; inducible CDK8 knockout (CDK8-iKO), lane 3; CA

treatment in absence of CDK8 (i.e., CDK19 inhibition), lane 4; CDK19 knockdown, lane 5. Only genes that changed (padj < 0.05) in at least 1 of the 5 conditions

are shown.

(B–F) Volcano plots corresponding to treatments shown in (A). Panel order in (B)–(F) corresponds to lane order in (A). No significant (padj < 0.05) gene expression

changes upon CA treatment of CDK8 knockout cells (CDK19 inhibition: siCtrl CDK8-iKO CA versus siCtrl CDK8-iKO) (E).
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To further probe kinase versus protein functions of CDK19, we

generated CDK19 knockout (CDK19-KO) MEFs using CRISPR-

Cas9 in CDK8fl-MEFs and ‘‘rescued’’ them (without clonal selec-

tion) with expression of WT CDK19 (CDK19-WT) or kinase-dead

CDK19 (CDK19-KDead). Expression levels of CDK19-WT and

CDK19-KDead were comparable in rescue cells (Figure S6C);

importantly, the cell pools did not correspondingly upregu-

late CDK8.

VSV infection assays showed that rescue expression of

CDK19-WT or CDK19-KDead had comparable effects, with

�30-fold better IFN-g-dependent survival compared with

CDK19-KO MEFs (EC50 0.118, 0.111, and 3.161, respectively;

Figures 7B and S6B). Consistent with the VSV infection assays,

RNA-seq data (Table S8) showed similar effects of CDK19-WT

and CDK19-KDead rescue expression on IFN-g-induced genes,

as depicted in Venn diagrams (Figures 7C and 7D), heatmaps

(Figure 7E), and PCA plots (Figure S6C). These data further sup-

port a kinase-independent, structural and/or scaffolding role for

the CDK19 protein. Combined with the gene expression data

summarized in Figures 5 and 6, these results demonstrated

A B

C D

E

Figure 7. CDK19 Drives the IFN-g Antiviral Response in Kinase-Independent Ways

(A) The IFN-g-dependent antiviral response in the absence of CDK19. siCDK19 and siCtrl cells were pretreated with various concentrations of IFN-g followed by

infection with vesicular stomatitis virus (VSV). Percentages of surviving cells and EC50 values (IFN-g concentration needed to prevent 50% cell death) are shown

(as means of duplicate experiments).

(B) Assessment of IFN-g-dependent antiviral response of CDK19-KO cells rescued with CDK19-WT or CDK19-KDead. CDK19-KO, CDK19-WT, and CDK19-

KDead cells were IFN-g treated and VSV infected and analyzed as in (A).

(C and D) Overlap of IFN-g-induced genes upregulated (C) or downregulated (D) upon rescue of CDK19-KO cells with CDK19-WT or CDK19-KDead. Data are

derived from RNA-seq of CDK19-KO, CDK19-WT, and CDK19-KDead stimulated with IFN-g for 3 h.

(E) Heatmap summarizing expression changes of IFN-g-induced genes (lfcR 1, padj < 0.05, FPKM stimulatedR 1) upon rescue of CDK19-KO cells with CDK19-

WT or CDK19-KDead.
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that CDK8 andCDK19 are essential but nonredundant regulators

of IFN-g responses; moreover, unlike CDK8, CDK19 drives

the IFN-g-induced antiviral defense by a kinase-independent

mechanism.

DISCUSSION

The IFN-g signaling pathway is relevant in most mammalian cell

types. The Mediator kinase CDK8 has been shown to regulate

IFN-g-stimulated transcription partially through phosphorylation

of the STAT1 AD at S727 (Bancerek et al., 2013; Nitulescu et al.,

2017). Potential functions for the highly conserved CDK8 paralog

CDK19, however, have not been thoroughly addressed. The

development of selective inhibitors of CDK8 and CDK19 has

enabled a delineation of kinase-specific functions (Dale et al.,

2015; Johannessen et al., 2017; Koehler et al., 2016; Pelish

et al., 2015). These studies have established that the transcrip-

tional effects of Mediator kinase inhibition can be distinct from

CDK8 or CDK19 knockdown (Poss et al., 2016), which reflects

basic structural or scaffolding roles for the kinase protein itself.

In this study, we set out to define and decouple (1) the regulatory

roles of CDK19 versus CDK8 and (2) the effects of their enzy-

matic activity versus the structural and/or scaffolding function

for each kinase. To our knowledge, this IFN-g-focused study

represents the most thorough analysis of Mediator kinase struc-

tural and enzymatic function to date.

The GRO-seq and PRO-seq data have solidified a role for

CDK8 in RNAPII pause regulation, which could be inferred

from chromatin immunoprecipitation sequencing (ChIP-seq)

data in human cells (Galbraith et al., 2013; Pelish et al., 2015). In-

hibition of Mediator kinase activity increased pausing at hun-

dreds of genes in MEFs and human HCT116 cells. This effect

was prominent at IFN-g-induced genes, and we noted a correla-

tion between increased PI and genes negatively regulated by

CA. These results point to a general role for Mediator kinase ac-

tivity in RNAPII pausing and/or pause release. Although the ki-

nase substrates for CDK8 and CDK19 have not been identified

in IFN-g-stimulated cells, experiments in unstimulated HCT116

cells identified high-confidence targets that may contribute to

Mediator-kinase-dependent RNAPII pause regulation, including

AFF4, NELFA, and POLR2M (Poss et al., 2016). CDK8-depen-

dent STAT1 S727 phosphorylation may also impact RNAPII

promoter-proximal pausing upon IFN-g stimulation. Future ex-

periments will seek to delineate phospho-site specific regulatory

roles; however, we anticipate that many CDK8 substrates

contribute to transcriptional regulation upon activation of IFN-g

signaling cascades.

The most rapid transcriptional response to a stimulus appears

to be expression at enhancers (Arner et al., 2015). The MD score

is an unbiased means to assess eRNA transcriptional changes,

and mapping changes (positive or negative) to consensus TF

binding motifs can reliably infer TF activity (Azofeifa et al.,

2018). Using the MD score method, we identified eRNAs that

were strongly induced by IFN-g (t = 30 min); as expected, the

‘‘epicenters’’ of the induced eRNAsmapped to consensusmotifs

of JAK-STAT pathway TFs (e.g., STAT1 and IRF1) in both mouse

and human cells. Notably, Mediator kinase inhibition blocked

eRNA induction at these loci, suggesting reduced IFN-g-respon-

sive TF activity.Whereas theMDscore data showedexpected TF

induction upon IFN-g stimulation, eRNAs associated with other

TFs were identified as well. This may reflect uncharacterized bio-

logical roles for these factors (e.g., ESR2 and MEF2) in the IFN-g

response, which could be explored in future studies.

In the context of IFN-g stimulation, we completed comparative

analyses in a cell line (CDK8fl-MEFs) that allowed inducible dele-

tion or depletion of either CDK8 or CDK19, thereby avoiding

compensatory effects that commonly arise from clonal selection

of knockout cell lines (Rossi et al., 2015). Although both CDK8

and CDK19 were shown to govern the IFN-g transcriptional

response, they regulated distinct sets of genes via distinct mech-

anisms. The impact of CDK8 derived primarily from its kinase ac-

tivity. Using a combination of approaches, we observed that

phosphorylation of the STAT1 AD at S727 is mediated by

CDK8, but not CDK19, extending previous results in IFN-g-stim-

ulated MEFs (Bancerek et al., 2013). In contrast to CDK8, we

observed that the kinase activity of CDK19 was largely inconse-

quential. Rather, a structural role was evident for CDK19, as its

inducible knockdown triggered stark transcriptional effects dur-

ing IFN-g stimulation that were not affected by CA treatment.

Both the kinase-dependent (CDK8-mediated) and kinase-in-

dependent (CDK19-mediated) effects appeared to be essential

for the IFN-g response. STAT1 AD phosphorylation (CDK8

dependent) is required for efficient induction of the antiviral state

(Bromberg et al., 1996; Horvath and Darnell, 1996). In this study,

we demonstrated that the CDK8 paralog CDK19 is a similarly

essential component of the IFN-g-induced antiviral program.

Importantly, CDK19 kinase-independent function was verified

in rescue experiments; expression of either WT or CDK19-

KDead in a null background restored gene expression and VSV

resistance toward WT levels. A structural and/or scaffolding

role for CDK19 (i.e., kinase independent) was also observed dur-

ing p53 response in human osteosarcoma cells (Audetat et al.,

2017), suggesting that CDK19 mediates structural interactions

not shared by CDK8. Because CDK8 and CDK19 are mutually

exclusive subunits of the Mediator kinase module (Galbraith

et al., 2013), these results suggest the assembly of distinct

CDK8- and CDK19-Mediator complexes at select genomic loci

during IFN-g stimulation.

Because IFN-g almost exclusively upregulated gene expres-

sion, this served as a means to study Mediator-kinase-depen-

dent effects on transcription activation. We observed that CA

had minimal impact on gene expression in unstimulated cells,

whereas CA suppressed induction of dozens of genes activated

by IFN-g. These findings have parallels with work from theRonin-

son group, in which they noted that Mediator kinase inhibition

(with Senexin A) suppressed transcriptional activation by nuclear

factor kB (NF-kB) but had little effect on basal expression (Chen

et al., 2017). Similarly, Johannessen et al. noted that Mediator ki-

nase inhibition did not grossly perturb the transcriptome of

quiescent macrophages (Johannessen et al., 2017). Given the

selective effects on inducible (i.e., not basal) gene expression,

the Roninson group concluded that CDK8 and/or CDK19

may represent key mediators of transcriptional reprogramming

(Chen et al., 2017). In this context, transcriptional reprogram-

ming refers to the initial stimulus response and is distinct from re-

programming associated with cell differentiation.
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Rapid transcriptional changes are important for immune sys-

tem activation during infection and likely contribute to longer-

term shifts in gene expression patterns (e.g., through epigenetic

changes; Ivashkiv, 2018). Our results implicate Mediator kinases

in these processes, but future study is needed to characterize

their impact across longer time frames. It is notable that CDK8

or CDK19 knockdown or CDK8 and CDK19 inhibition is not

generally cytotoxic under normal growth conditions (Donner

et al., 2007; Galbraith et al., 2013; Pelish et al., 2015), implicating

Mediator kinase function as more important for adaptive tran-

scriptional responses (i.e., reprogramming). The regulation of

IFN responses has broad physiological relevance, ranging from

inflammation to aging to tumor cell clearance. Our results reveal

that the Mediator kinases activate distinct transcriptional pro-

grams, through distinct mechanisms, in response to the ubiqui-

tous inflammatory cytokine IFN-g, suggesting that separately

targeting CDK8 kinase activity or CDK19 protein levels (e.g.,

with proteolysis targeting chimeras [PROTACs]) may have

diverse biomedical applications.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

pS727 STAT1 Kovarik et al., 1999 N/A

pS727 STAT1 Cell Signaling Technology Cat#9177; RRID: AB_2197983

pY701 STAT1 (58D6) Cell Signaling Technology Cat#9167S; RRID: AB_561284

pY701 STAT1 (D4A7) Cell Signaling Technology Cat#7649; RRID: AB_10950970

STAT1 p84/p91 (E23) Santa Cruz Biotechnology Cat#sc-346; RRID: AB_632435

CDK8 Santa Cruz Biotechnology Cat#sc-1521; RRID: AB_2260300

CDK8 Cell Signaling Technology Cat#4101S; RRID: AB_1903934

CDK19 Sigma-Aldrich Cat# HPA007053; RRID: AB_1846369

Alpha-Tubulin Cell Signaling Technology Cat#2144S; RRID: AB_2210548

Alpha-Tubulin Sigma-Aldrich Cat#T9026; RRID: AB_477593

MED12 Bethyl Cat#A300-774A; RRID: AB_669756

MED13, TRAP240(E-12) Santa Cruz Biotechnology Cat# sc-515557

CCNC Bethyl Cat#A301-989A; RRID: AB_1576505

IRF1 (D5E4) Cell Signaling Technology Cat#8478T; RRID: AB_10949108

Peroxidase-conjugated AffiniPure Goat

Anti-Rabbit IgG (H+L)

Jackson Immunoresearch Cat#111-035-003; RRID: AB_2313567

Peroxidase-conjugated AffiniPure Goat

Anti-Mouse IgG (H+L)

Jackson Immunoresearch Cat#115-035-003; RRID: AB_10015289

Bacterial and Virus Strains

Vesicular stomatitis virus (VSV), Indiana strain Laboratory of Birgit Strobl N/A

Chemicals, Peptides, and Recombinant Proteins

Murine Interferon-gamma eBioscience Cat#14-8311

Human Interferon-gamma Laboratory of James E. Darnell N/A

Human Interferon-gamma Fisher Scientific Cat#PHC4031

Cortistatin A Laboratory of Matthew Shair N/A

NM-PP1 Calbiochem Cat#529581

3MB-PP1 Cayman Chemical Cat#56025-83-5

4-Hydroxytamoxifen Sigma-Aldrich Cat#T176-10MG

G418 (Geneticin) Invivogen Cat#ant-gn-1

Lipofectamine RNAiMAX Transfection Reagent Invitrogen Cat#13778-150

cOmplete Protease Inhibitor Cocktail Roche Cat#11836145001

SUPERase-In Invitrogen Cat#AM2694

RQ1 RNase-Free DNase Promega Cat#M6101

DNase I Merck Cat #4716728001

RevertAid Reverse Transcriptase Thermo Scientific Cat#EP0442

Q5� High-Fidelity DNA Polymerase NEB Cat#M0491L

XbaI Thermo Scientific Cat#FD0684

NotI Thermo Scientific Cat#FD0594

XhoI Thermo Scientific Cat#FD0694

T4 DNA Ligase Thermo Scientific Cat#EL001

Ampicillin AppliChem Cat#A0839

Fast Alkaline Phosohatase Thermo Scientific Cat#EF0651

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

NEBNext Ultra Directional RNA Library Prep Kit NEB Cat# E7420S

NEBNext Ultra II RNA Library Prep Kit NEB Cat# E7770S

NEBNext rRNA Depletion Kit NEB Cat# E6310S

NEBNext Poly(A) mRNAMagnetic IsolationModule NEB Cat# E7490S

RNase-Free DNase Set QIAGEN Cat#79254

RNeasy Mini Kit QIAGEN Cat#74104

QIAzol Lysis Reagent QIAGEN Cat#79306

TRIzol Lysis Reagent Invitrogen Cat#15596026

RNA 6000 Nano Assays Agilent Cat#5067-1511

Ambion Fragmentation Reagents Ambion Cat#AM8740

Illustra MicroSpin G-25 columns GE Healthcare Cat#27532501

Anti-BrU agarose beads Santa Cruz Biotechnology Cat#sc-32323AC

Monarch DNA gel extraction kit NEB Cat#T1020L

Plasmid mini prep kit QIAGEN Cat#2710

Gibson Assembly Master Mix NEB Cat#E2611L

Deposited Data

Raw and analyzed data - RNA-Seq experiments,

GRO-Seq experiment

This paper SRA: PRJNA542065 https://www.

ncbi.nlm.nih.gov/sra

Raw and analyzed data - PRO-Seq experiment This paper GEO: GSE129501 https://www.ncbi.nlm.nih.

gov/geo/

Raw image files - western blots This paper https://doi.org/10.17632/crj8f3j63z.1

Mouse reference genome (GRCm38/mm10) Genome Reference Consortium https://www.ncbi.nlm.nih.gov/grc/mouse

Human reference genome (GRCh37/hg19) Genome Reference Consortium https://www.ncbi.nlm.nih.gov/grc/human

HOCOMOCO database Kulakovskiy et al., 2013 http://hocomoco11.autosome.ru/

Experimental Models: Cell Lines

WT MEFs Bancerek et al., 2013 N/A

CDK8fl-MEFs This study N/A

CDK19 KO MEFs This study N/A

CDK19 KO MEFs expressing CDK19-WT This study N/A

CDK19 KO MEFs expressing CDK19-KDead This study N/A

HAP1 WT Haplogen N/A

HAP1 CDK8 KO (clone 325-1) Haplogen N/A

HAP1 CDK8as This study N/A

HCT116 WT Galbraith et al., 2017 N/A

HCT116 CDK8as Galbraith et al., 2017 N/A

Experimental Models: Organisms/Strains

Cdk8tm1c(EUCOMM)Hmgu Yann Herault, IGMBC N/A

Rosa26CreERT2 Hameyer et al., 2007 N/A

CreERT2-CDK8fl/fl This study N/A

Oligonucleotides

ON-TARGET plus SMART pool siRNA CDK19 Dharmacon Cat#L-059630-00-0010

ON-TARGET plus non-targeting siRNA pool Dharmacon Cat#D-001810-10-20

PCR primers and guide RNAs

PCR primers and guide RNAs This paper see Table S9

Recombinant DNA

pSpCas9(BB)-2A-Puro (PX459) Addgene plasmid Cat#48139

pOG44 Flp-Recombinase expression vector Thermo Scientific Cat#V600520

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pavel

Kovarik (pavel.kovarik@univie.ac.at).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

MEF (mouse embryonic fibroblasts) cell lines established in this study:
Conditional CDK8 knockout MEFs: MEFs allowing inducible deletion of CDK8 were derived from CreERT2-Cdk8fl/fl mice. Cdk8fl/fl

mice (allele Cdk8tm1c(EUCOMM)Hmgu, provided by Yann Herault, IGMBC, Illkirch, France) on C57BL/6 background were crossed with

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PB-EF1a-MCS-IRES-Neo cDNA cloning and

expression vector

SBI System Biosciences Cat#PB533A-2

pB_EF1_CDK19_IRES_Neo This study N/A

piggyBac transposase plasmid Cadiñanos and Bradley, 2007 N/A

pKozak plasmid Knuesel et al., 2009 N/A

Software and Algorithms

Image Lab version 5.2.1 Bio-Rad N/A

Gen5 Microplate Reader Software BioTek N/A

AAT-Bioquest EC50 AAT-Bioquest https://www.aatbio.com/tools/ec50-calculator

GraphPad Prism 6 Graph Pad Software https://www.graphpad.com

HTSeq Anders et al., 2015 https://github.com/simon-anders/htseq

cutadapt https://doi.org/10.14806/ej.17.1.200

FastQC version 0.11.5 http://www.bioinformatics.babraham.ac.uk/

projects/fastqc/

FastQ Screen version 0.11.0 https://www.bioinformatics.babraham.ac.uk/

projects/fastq_screen/

STAR version 2.5 Dobin et al., 2013 https://code.google.com/archive/p/rna-star/

R-project version 3.4.2 with RStudio IDE

version 1.0.143

R Core Team, 2017 https://www.R-project.org/

GenePattern server Reich et al., 2006 http://software.broadinstitute.org/cancer/

software/genepattern/

DESeq2 version 1.18.1 and 1.22.1 Love et al., 2014 http://www.bioconductor.org/packages/

release/bioc/html/DESeq2.html

RSeQC http://rseqc.sourceforge.net/

Mix2 RNA-Seq data analysis software Lexogen N/A

Broad Institute sgRNA designer https://portals.broadinstitute.org/gpp/public/

analysis-tools/sgrna-design

BBDUK from BBTools (v37.99) https://sourceforge.net/projects/bbmap/

FASTQ-MCF from ea-utils (v1.05) Kechin et al., 2017 https://expressionanalysis.github.io/ea-utils/

Hisat2 (v2.1.0) Kim et al., 2015 https://ccb.jhu.edu/software/hisat2/index.shtml

Samtools (v1.5) Li et al., 2015 https://sourceforge.net/projects/samtools/files/

samtools/1.5/

featureCount (v1.6.2) Liao et al., 2014 http://subread.sourceforge.net/

HOMER (v4.9.1) Heinz et al., 2010 http://homer.ucsd.edu/homer/

Gviz package (v1.26.4) Hahne and Ivanek, 2016 https://bioconductor.org/packages/release/

bioc/html/Gviz.html

CRISPOR tool Haeussler et al., 2016 http://crispor.tefor.net/

TIDE Brinkman et al., 2014 https://tide.deskgen.com/

Broad Institute sgRNA designer https://portals.broadinstitute.org/gpp/public/

analysis-tools/sgrna-design
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Rosa26CreERT2 mice (Hameyer et al., 2007) to generate CreERT-Cdk8fl/fl mice. Primary MEFs from CreERT2-CDK8fl/fl mice were

isolated on day 13.5 and immortalized via the 3T3 method (Todaro and Green, 1963). Activation of the CreERT2 recombinase led to

the excision of the loxP-flanked exon 5 resulting in a frameshift and nonsense mediated decay.

CDK19 KO MEFs

CDK19 knockout cells were generated in CDK8fl-MEFs using CRISPR/Cas9 (described in detail in the Method Details section).

CDK19 KO MEFs expressing CDK19-WT or CDK19-KDead protein

CDK19 KO cells were reconstituted with either CDK19-WT or CDK19-KDead expression constructs as described in the Method de-

tails section.

METHOD DETAILS

Cell culture
Mouse embryonic fibroblasts expressing wild-type STAT1 (WT MEFs) were described previously (Bancerek et al., 2013). MEFs al-

lowing inducible deletion of CDK8 were generated by immortalization of primary MEFs derived from CreERT2-Cdk8fl/fl mice. Briefly,

Cdk8fl/fl mice (allele Cdk8tm1c(EUCOMM)Hmgu, provided by Yann Herault, IGMBC, Illkirch, France) on C57BL/6 background were

crossed with Rosa26CreERT2 mice (Hameyer et al., 2007) to generate CreERT-Cdk8fl/fl mice. Primary MEFs from CreERT2-

CDK8fl/fl mice were isolated on day 13.5 and immortalized via the 3T3 method (Todaro and Green, 1963). Activation of the CreERT2

recombinase led to the excision of the loxP-flanked exon 5 resulting in a frameshift and nonsensemediated decay. MEFswere grown

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal calf serum (FCS) and penicillin-streptomycin. Wild-

type HAP1 cells (Carette et al., 2011) and CRISPR-Cas9 generated CDK8 knockout HAP1 cells (clone 325-1) were purchased from

Haplogen (Austria). HAP1 cells were grown in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with 10% FCS, 200 nM

L-glutamine and penicillin-streptomycin. HCT116 cells were grown in McCoy’s media (GIBCO, 16600082) with GIBCO 100x Anti-

biotic-Antimycotic (Fisher Scientific, 15240062) penicillin-streptomycin and 10% fetal bovine serum (FBS) supplementation.

Cytokines and inhibitors
Murine IFN-g (eBioscience) was used at a concentration of 10 ng/ml for stimulation of MEFs. Human IFN-g (kind gift from James E.

Darnell, Rockefeller University, US) was used for stimulation of HAP1 cells at 10 ng/ml. HCT116 cells were treatedwith 10 ng/ml IFN-g

(Fisher Scientific, #PHC4031). Cortistatin A (kindly provided byMatthew Shair, Harvard University, Cambridge, USA) was applied at a

concentration of 100 nM one hour before IFN-g stimulation. NM-PP1 (Calbiochem, 529581) used for inhibition of analog-sensitive

CDK8 mutant (CDK8as) was applied at a concentration of 10 mM 4 h before IFN-g stimulation. The ATP analog 3MB-PP1 (Cayman

Chemical, 56025-83-5) was applied at 10 mM for 45 minutes (simultaneously with IFN-g).

RNA-Seq
The RNA isolation was done as described (Audetat et al., 2017). In brief cells were seeded with 70% confluency on 15 cm and 6 cm

dishes, respectively. For total RNA isolation, 7 mL (15 cm dish) or 2 mL (6 cm dish) Qiazol Lysis Reagent (QIAGEN, 79306) were

added. The samples weremixed thoroughly before taking 1 aliquot for Chloroform extraction. RNAwas precipitated with Isopropanol

and Sodium chloride, followed by DNase treatment using RNase-free DNase Set (QIAGEN, 79254) and clean up using RNeasy Mini

Kit (QIAGEN, 74104). For library preparation the NEBNext rRNA Depletion Kit (NEB E6310S) or the NEBNext Poly(A) mRNAMagnetic

Isolation Module (NEB E7490S), together with the NEBNext Ultra II RNA Library Prep Kit from NEB (NEB E7770S) were used accord-

ing to the manufacturer’s protocol. The RNA quality was assessed using Agilent RNA 6000 Nano Assays (5067-1511) that were

analyzed on an Agilent 2100 Bioanalyzer. The library quality check and Solexa sequencing was performed at the VBCF NGS Unit

(https://www.viennabiocenter.org/facilities). Single-end fragment libraries (50 bp) were sequenced on the Illumina HiSeq 2500 plat-

form. Processing of raw reads and mapping were done as described for GRO-seq experiment. Quantitation of RNA-Seq data for WT

MEFs stimulated with IFN-g for 6 h ± CA treatment (Figure 1) was carried out using HTSeq (Anders et al., 2015). Reads mapped to

exons and exon-exon junctions were defined asmRNA reads, while reads mapped to introns and intron-exon junctions were defined

as pre-mRNA reads. The raw as well as processed data are accessible via the NCBI’s Sequence Read Archive (SRA) database

(accession number PRJNA542065). Differential expression analysis was performed based on read counts using DESeq2 (Love

et al., 2014). Principal component analysis (PCA) and normalization of read counts to library size and composition (using DESeq2)

revealed that replicate 1 of sample 6 h IFN-g without CA was an outlier. This replicate was removed from the subsequent analysis.

IFN-g-induced genes were defined by log2-fold-change (lfc) R 1, padj < 0.05 and FPKM stimulated R 1. Analysis of RNA-Seq data

for siCtrl, CDK8-iKO and siCDK19 in the presence or absence of CA with or without 3 h IFN-g stimulation (Figure 5 and 6) revealed

more than 95% uniquely mapped reads in each sample. Sample integrity was analyzed by gene body coverage plots using RSeQC.

Transcripts were quantified using Mix2 RNA-Seq data analysis software (Lexogen). Differential expression analysis was performed

using DESeq2 version 1.18.1. Exploratory data analysis and visualizations were performed in R-project version 3.4.2 (R Core Team,

2017) (Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/) with Rstudio IDE version 1.0.143, ggplot2

(2.2.1), dplyr (0.7.4), readr (1.1.1), gplots (3.0.1). GSEA was completed as described for GRO-Seq experiments. Genes were required

to have FPKM > 0.5 in all replicates and conditions.
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GRO-Seq
Cells were seeded on three 15 cm dishes (4x106 per dish) for each time point or treatment 16 h prior to the experiments (�70% con-

fluency at the time of experiment). Cells were stimulated or treated as desired, washed twice with cold PBS and detached using 2mL

Trypsin/EDTA per dish. Cells were re-suspended in 10 mL cold PBS and collected by centrifugation at 270 g for 5 minutes. For lysis,

cells were incubated for 10 minutes in 10 mL lysis buffer (10 mM Tris-HCl, 5 mMMgCl2, 10 mMNaCl, 0.5%NP-40, 1 mMDTT, 1 mM

sodium metabisulfite, 1 mM benzamidine, 0.025 mM PMSF, 4 U/ml SUPERase-In) on ice. Nuclei were collected by centrifugation at

170 g for 10 minutes, washed once with 1 mL reaction buffer (20 mM Tris-HCl, 10 mM MgCl2, 150 mM KCl, 20% Glycerol, 4 U/ml

SUPERase-In), and re-suspended in 50 ml reaction buffer and counted. Total 5x106 nuclei in 100 ml reaction buffer were used per

run-on reaction. The Run-on reaction and capturing of the labeled RNA was done as described previously (Allen et al., 2014). Briefly,

28.9 ml reaction buffer, 5 ml of rATP, rCTP, rGTP and 5-Bromo-UTP (10 mM each), 0.1 ml DTT, 1 ml RNase-In and 50 ml 2% sarkosyl

were added per run-on reaction. The samples were incubated at 30�C for 5 minutes, followed by RNA isolation using TRIzol reagent

(Invitrogen, 15596026). RNA precipitation was done using Isopropanol and GlycoBlue. RNA was fragmented by incubation with Am-

bion Fragmentation Reagents (AM8740) at 70�C for 10 minutes, run over an Illustra MicroSpin G-25 column (GE Healthcare,

27532501) according to the manufacturer’s protocol and DNase treated (Promega, M6101) for 10 minutes at 37�C. To capture

the labeled RNA, two rounds of bead binding were performed. Therefore the samples were incubated for 1 h with Anti-BrU agarose

beads (Santa Cruz, sc-32323 AC), followed by extensive washing and elution. Eluted RNA was phenol/chloroform extracted and

ethanol precipitated. After the second RNA precipitation samples were immediately used for library preparation. The sequencing li-

brary was prepared using the NEBNext Ultra Directional RNA Library Prep Kit (NEB, E7420S) following the manufacturer’s protocol

for highly degraded RNA with RNA integrity number (RIN) % 2. The library quality check and sequencing was performed at the Ge-

nomics and Microarray Core Facility at the University of Colorado Anschutz Medical Campus and at the BioFrontiers Sequencing

Facility at the University of Colorado Boulder. Single-end fragment libraries (50 bp) were sequenced on the Illumina HiSeq 4000 plat-

form. Raw sequencing reads were demultiplexed, and after barcode, adaptor and quality trimming with cutadapt (https://doi.org/10.

14806/ej.17.1.200), quality control was performed using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The

remaining reads were mapped to the GRCm38/mm10 mouse genome assembly using genomic short-read RNA-Seq aligner STAR

version 2.5 (Dobin et al., 2013). We obtained at least 65% uniquely mapped reads in each sample. Data analysis and visualizations

were performed in R-project version 3.4.2 with Rstudio IDE version 1.0.143. Reads were counted in 2 intervals per transcript (relative

to transcription start site, interval 1: (�500;500), interval 2: (501:end)) using featureCounts (Liao et al., 2014). Pausing indexwas calcu-

lated as ratio of read counts in interval 1 to read counts in interval 2 normalized to the length of intervals. Inhibitor responsewas calcu-

lated as ratio of pausing index in the presence of inhibitor to pausing index in the control. Calculation of transcripts per million reads

(log2TPM) excluded the first 500 bases downstream the transcriptional start side tominimize effects of RNAPII pausing. PI was calcu-

lated both for individual replicates and pooled replicates (by summing up counts). For gene set enrichment analysis (GSEA) the GSEA

prerankedmodule on theGenePattern server (Reich et al., 2006) was used, with log2-fold-change values for all detected genes for the

indicated comparisons as the ranking metric. Genes were required to have TPM > 0.5 in all replicates and conditions.

The GRO-Seq data are accessible via the NCBI’s Sequence Read Archive (SRA) database (accession number PRJNA542065).

PRO-Seq
Nuclei Preparation:HCT116 cells (WT or CDK8as) were seeded on three 15 cmdishes (1x107 cells/dish), 24 h prior to the experiments

(�70% confluency at time of experiment). Cells were treated simultaneously with 10 ng/ml IFN-g and/or 10 mM 3MB-PP1 for 45 min,

washed 3xwith ice cold PBS, and then treatedwith 10mL (per 15 cmplate) ice-cold lysis buffer (10mMTris–HCl pH 7.4, 2mMMgCl2,

3 mMCaCl2, 0.5% NP-40, 10% glycerol, 1 mMDTT, 1x Protease Inhibitors (1 mMBenzamidine (Sigma B6506-100G), 1 mM Sodium

Metabisulfite (Sigma 255556-100G), 0.25 mM Phenylmethylsulfonyl Fluoride (American Bioanalytical AB01620), and 4 U/ml

SUPERase-In) and scraped from the plates. Cells were centrifuged 1000 g for 15 min at 4�C. Supernatant was removed and pellet

was resuspended in 1.5 mL lysis buffer to a homogeneous mixture by pipetting 20-30X before adding another 8.5 mL lysis buffer.

Suspension was centrifuged with a fixed-angle rotor at 1000 g for 15 min at 4�C. Supernatant was removed and pellet was resus-

pended in 1 mL of lysis buffer and transferred to a 1.7 mL pre-lubricated tube (Costar cat. No. 3207). Suspensions were then pelleted

in a microcentrifuge at 1000 g for 5 min at 4�C. Next, supernatant was removed and pellets were resuspended in 500 mL of freezing

buffer (50 mM Tris pH 8.3, 40% glycerol, 5 mMMgCl2, 0.1 mMEDTA, 4 U/ml SUPERase-In). Nuclei were centrifuged 2000 g for 2 min

at 4�C. Pellets were resuspended in 100 mL freezing buffer. To determine concentration, nuclei were counted from 1 mL of suspension

and freezing buffer was added to generate 100 mL aliquots of 10x106 nuclei. Aliquots were flash frozen in liquid nitrogen and stored

at �80�C.
Nuclear run-on and RNA preparation

Nuclear run-on experiments were performed as described (Mahat et al., 2016) with the following modifications: the final concentra-

tion of non-biotinylated CTP was raised from 0.25 mM to 25 mM, and the final library clean-up and size selection was accomplished

using 1X AMPure XP beads (Beckman).

Sequencing

Sequencing of PRO-Seq libraries was performed at the BioFrontiers Sequencing Facility (UC-Boulder). Single-end fragment libraries

(75 bp) were sequenced on the Illumina NextSeq 500 platform (RTA version: 2.4.11, Instrument ID: NB501447), demultiplexed and

converted BCL to fastq format using bcl2fastq (bcl2fastq v2.20.0.422); sequencing data quality was assessed using FASTQC
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(v0.11.5) (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (v0.11.0, https://www.bioinformatics.

babraham.ac.uk/projects/fastq_screen/). Trimming and filtering of low-quality reads was performed using BBDUK from BBTools

(v37.99) and FASTQ-MCF from EAUtils (v1.05) (Kechin et al., 2017). Alignment to the human reference genome (GRCh37/hg19)

was carried out using Hisat2 (v2.1.0) (Kim et al., 2015) in unpaired, no-spliced-alignment mode with a GRCh37/hg19 index, and align-

ments were sorted and filtered for mapping quality (MAPQ > 10) using Samtools (v1.5) (Li et al., 2015). Gene-level count data for tran-

scription start site (TSS, �30 to +300) and gene body (+301 to end) regions were obtained using featureCounts from the Subread

package (v1.6.2) (Liao et al., 2013) with custom annotation files for single unique TSS and gene body regions per gene. Custom

annotation files with single unique TSS and gene body regions per gene were generated as follows: 1) hg19 RefSeqCurated tran-

script-level annotation was downloaded from the UCSC genome table browser (09-07-2018), transcripts shorter than 1500 bp

and non-standard chromosome were removed, and only transcripts with unique start/stop coordinates per gene were retained; 2)

Sense and anti-sense counts were tabulated and each candidate TSS region was ranked by sense and antisense reads to obtain

a single ‘most-active’ TSS per gene; 3) Finally, per gene, the TSS was combined with the shortest gene body to avoid the influence

of alternative transcription termination/polyadenylation sites. Differential expression analysis of gene body regions was assessed us-

ing the DESeq2 package (v1.22.1) (Love et al., 2014) with a custom R script (R v3.5.1 / RStudio v1.1.453 / Bioconductor v3.7) with

cutoffs as described in text and figure legends. Analysis of RNAPII pausingwas carried out using a customR script (R v3.5.1 / RStudio

v1.1.453) with the ggplot2 package (v3.1.0) used for visualizations. Gene level TSS and gene body counts were normalized by

counts-per-million and by region length (cpm/bp), and Pausing Index (PI) calculated as the ratio of normalized reads in the TSS

(cpm/bp) to normalized reads in the gene body (cpm/bp). Genes with < 0.5 cpm in all samples were excluded from analysis. Means

of replicate values were used for plots and Wilcoxon/Mann-Whitney U tests. For genome browser snapshots, aligned reads were

downsampled to the lower aligned read count per replicate using Samtools, to ensure equal contributions from each replicate, fol-

lowed by merging of replicates and generation of coverage tracks in the bedgraph format using HOMER (v4.9.1) (Heinz et al., 2010)

Genome browser snapshots were then generated from the bedgraph files using a custom R script (R v3.5.1 / RStudio v1.1.453 / Bio-

conductor v3.7) and theGviz package (v1.26.4) (Hahne and Ivanek, 2016). PRO-Seq data are accessible via the NCBI’s Gene Expres-

sion Omnibus (GEO) database (accession number GSE129501).

Modified motif displacement score (MD Score) analysis
We performed the motif displacement (MD) analysis as described (Azofeifa et al., 2018) with the top 20% differentially transcribed

enhancer RNAs (eRNAs) quantified by DE-Seq2. This modification was made to improve the signal-to-noise ratio of the MD analysis.

For the analysis of TF motifs associated with eRNA transcription we used the hand-curated database of TF binding motif models

HOCOMOCO (Kulakovskiy et al., 2013). We note that within the HOCOMOCO database for mouse TF binding motifs, the principal

binding model for STAT1 (motif ID: STAT1_MOUSE.H11MO.0.A) corresponds to IRF binding motifs whereas the alternate binding

model (motif ID: STAT1_MOUSE.H11MO.1.A) corresponds to the canonical STAT1 motif (Decker et al., 1997; Mancino and Natoli,

2016). We have included this information in the table containing MD scores (Table S6) and used the correct designation in the MD

score figure (Figures 3A and B).

Inducible CDK8 knockout
Inducible CDK8 knockout in CDK8fl-MEFs was induced by 4-hydroxytamoxifen (4OHT) treatment (3 h, 250 nM) in low fetal calf serum

medium (2% FCS), followed by recovery (2 days). CDK8 knockout was validated by genotyping using the primers CDK8 Intron4/

Exon5 fwd 50-AATAGGTGTGTATCTTATGGCTTCC-30 and CDK8 Intron4/Exon5 rev 50-ATTTTTACTCTTCCTCGCTCAGGAC-30 and
by western blotting.

Knockdown of CDK19
Silencing was performed as described (Bancerek et al., 2013). In brief, approximately 7x104 cells were seeded on a 6 cm dish and

incubated 7 h followed by transfection with 100 pmol ON-TARGET plusTM SMART pool siRNA targeting CDK19 (Dharmacon,

L-059630-00-0010) or non-targeting control (Dharmacon, D-001810-10-20) using Lipofectamine RNAiMAX Reagent (Invitrogen,

13778-150) in Opti-MEM I (GIBCO, 31985070) for 48 h.

Knockout of CDK19
CDK19 knockout was generated in CDK8fl-MEFs using CRISPR/Cas9. Guide RNA (gRNA) sequence (50-GTACAGCAGTGATTTAAC

CATGG-30) targeting exon 4 of CDK19 was designed using the CRISPOR tool (Haeussler et al., 2016). The gRNA together with the

purified Cas9 protein was delivered into CDK8fl-MEFs by electroporation. Single cells were grown and screened for the successful

knockout using TIDE (Brinkman et al., 2014), sequencing and western blotting.

HAP1 cells expressing analog-sensitive CDK8 (CDK8as)
CRISPR/Cas9-mediated homologous recombination was used to engineer an ATP analog-sensitive CDK8mutant (CDK8as) in HAP1

cells. To introduce the F97G mutation in the exon 3 of CDK8 a guide RNA (gRNA; 50-TGTTTCTGTCTCATGCTGAT-30) was designed

using the Broad Institute sgRNA designer (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design). A homology-

directed repair template (HDRT) harboring the exon 3 with phenylalanine 97 changed to glycine (F97G) (nt change CTG TTT to
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CTC GGG), a mutated PAM site (silent mutation), a PGK-neomycin phosphotransferase (Neo) gene flanked by flippase recognition

target (FRT) sites and flanking homology arms up- and downstreamof exon 3was generated. TheHDRTwas cloned together with the

gRNA into the pSpCas9(BB)-2A-Puro (PX459) plasmid (Addgene #48139, (Ran et al., 2013)). Transfected cells were selected using

1 mg/ml puromycin for 24 h followed by 3 mg/ml G418 (InvivoGen) treatment on day 6 post-transfection. Surviving clones were

analyzed for successful knock-in by PCR-based genotyping and sequencing. In the obtained positive knock-in clones the neomycin

selection cassette was removed by transient expression of flippase (pOG44 Flp-Recombinase expression vector, Thermo Scientific,

V600520) followed by a negative selection treating the cells with 3 mg/ml G418 (InvivoGen).

CDK19-WT expression construct
Total RNA fromWTMEF cells was isolated with the Trizol – Isopropanol method (QIAzol, #79306, QIAGEN), followed by DNA-diges-

tion (DNase I #4716728001, Merck), acidic-phenol-chloroform clean-up, isopropanol RNA precipitation and reverse transcription

with RevertAid Reverse Transcriptase (#EP0442, Thermo Scientific) and oligo dT18 primers (Eurofins Genomics) according to man-

ufacturer’s protocol. Nested PCR strategy was applied to amplify and modify the coding sequence of CDK19 for cloning. First, the

cDNA was amplified with Q5� High-Fidelity DNA Polymerase (#M0491L, NEB) and target specific primers (Forward: 50-GAGGA

GGCGGGACTGTAGAT-30, Reverse: 50-TTTGCATGGTGTCAGTCTTCATTC-30) followed by gel purification (Monarch DNA gel

extraction kit #T1020L, NEB). Primers of the second PCR were designed in a way that they flank the CDS, remove the stop codon

and introduce a 50 XbaI and 30 XhoI NotI cleavage site (Forward: 50-CATTCTAGACCGAGGAGTCCCTTGCTGAA-30, Reverse:

50-TATGCGGCCGCTATCTCGAGTACCGGTGGGTCTGGTGAGAT-30). After gel purification and sequence validation, the PCR prod-

uct and the PiggyBac-EF1-MCS-IRES-Neo cDNA Cloning and Expression Vector (#PB533A-2, SBI System Biosciences) were dou-

ble digested using XbaI (#FD0684, Thermo Scientific) and NotI (#FD0594, Thermo Scientific) followed by gel purification, T4 DNA

Ligase (#EL0011, Thermo Scientific) mediated ligation, transformation into chemically competent DH10B and ampicillin selection

(100 mg/ml, #A0839, AppliChem). Colonies were PCR-screened (Forward: 50-CAATTGAACGGGTGCCTAGAG-30, Reverse: 50-CCTT
GTTGAATACGCTTGAGGAGA-30) and plasmids were isolated by using plasmidmini prep kit (QIAprep, #27106, QIAGEN). C-terminal

triple-Flag-tag was introduced into double-digested (XhoI, #FD0694 Thermo Scientific and NotI in the presence of alkaline phospha-

tase, FastAP, #EF0651 Thermo Scientific) plasmid using double strand oligonucleotide (purchased from Integrated DNA Technolo-

gies as single strand oligonucleotides: +strand 50 TCG Agagac tacaaagaccatgacggtgattataaagatcatgacatcgattacaaggatgacg

atgacaagTAGC, -strand 50 GGCCGCTActtgtcatcgtcatccttgtaatcgatgtcatgatctttataatcaccgtcatggtctttgtagtctC). Sequence of final

plasmids (pB_EF1_CDK19_IRES_Neo) was validated with PCR and sequencing.

CDK19-KDead expression construct
Kinase-dead CDK19 (CDK19-KDead) was generated bymutation of aspartate 151 to alanine in the consensus active site. The D151A

mutation was introduced in the parental plasmid (pB_EF1_CDK19_IRES_Neo) using Gibson Assembly site-directed mutagenesis.

Briefly, PCR-amplified fragments (PCR_A: Forward: 50-agctgtgaccggcgcctactctagaCTAGATGGGGGAAGCAGACAATGG-30,
Reverse: 50-ctggtttcagTGCCCTGTGGAGCACCCA-30; PCR_B: Forward: 50-ccacagggcaCTGAAACCAGCAAATATCC-30, Reverse:
50-taggggggggggagggagaggggcgcggccgcGCTACTTGTCATCGTCATC-30) were purified with column DNA Clean-up kit (Monarch�
PCR & DNA Cleanup Kit, # T1030L, NEB) and mixed with XhoI/NotI double digested and gel purified plasmid in a molar ratio of insert

to plasmid of 1:2 (0.02pmol for the 6,886bp parental plasmid, 0.04pmol of the 508bp PCR_A and of the 1,168bp PCR_B, respec-

tively), followed by addition of 10 mL 2x Gibson Assembly Master Mix (E2611L, NEB) and incubation at 50�C for 90 min. 5 ml of

the reaction mix were used for transformation of 100 ml chemically competent DH10B.

Rescue of CDK19-KO cells with CDK19-WT or CDK19-KDead
CDK19-KO cells (8x105) were electroporated with 1 mg piggyBac transposase plasmid (Cadiñanos and Bradley, 2007) and 10 ng

CDK19-WT plasmid or 50 ng CDK19-KDead plasmid. Cells were selected for integration of the transposon by G418 treatment

(400 mg/ml) for 10 days and subsequently analyzed for CDK19 expression by qRT-PCR and western blotting.

Generation of CDK8as mutant for in vitro kinase assays
N-terminally glu-tagged CDK8 in a pKozak plasmid (Knuesel et al., 2009) was used to generate the analog-sensitive CDK8 mutant

(CDK8as) by mutation of the F97 codon (TTT) to a glycine (GGG) using site-directed mutagenesis. The mutated glu-CDK8as was

transformed into DH5a E. coli, and individual clones were selected, grown, purified, and sequenced. Sequence-verified glu-CDK8as

was cloned into the Baculovirus transfer vector pACEBac1. The resulting vector was transformed into DH5a E. coli and colonies were

selected, purified, and sequenced. Sequence-verified pACEBac1 containing glu-CDK8aswas used to transfer glu-CDK8as plus gen-

tamycin resistance into the baculoviral genome using Tn7 transposition. Successful integration was assessed by blue/white

screening plus gentamycin resistance. Bacmid DNAwas prepared from selected clones and used to transfect insect cells for protein

production.

In vitro kinase assays
Wild-type (WT CDK8) and analog-sensitive CDK8 (CDK8as) modules (containing CDK8, CCNC, MED12, and MED13) were purified

and assembled as described (Knuesel et al., 2009). Reactions were performed at 30�C for 45 minutes in kinase buffer (25 mM Tris
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pH 7.9, 100 mM KCl, 300 mM ATP, 10 mM MgCl2, and 2 mM DTT). WT CDK8 and CDK8as module, STAT1 substrate (2mL), 2.5 mCi

[g-32P]ATP and increasing concentrations of NM-PP1 ATP analog (1 to 100 mM) were added. SDS-PAGE was used to separate pro-

teins and the gels were subsequently stained with Coomassie, dried at 55�C for 60min, exposed on a phosphor-imager screen for 72

hours, and imaged using a Typhoon 9400 scanner. Quantitation of auto-rad bands was performed using ImageJ.

Whole cell extracts and western blotting
The procedures for whole cell extracts and immunoblotting were described (Sadzak et al., 2008). In brief, whole cell extracts were

prepared by lysing the cells for 5 minutes in Frackelton buffer (10mM Tris-HCl, 30 mM Na4P2O7, 50mM NaCl, 50 mMNaF, 1% Triton

X-100, 1 mM DTT, 1 mM vanadate and 1x protease inhibitor (Roche, 11836145001)). Lysates were cleared by centrifugation at

13200 rpm and 4�C. SDS loading buffer was added in a 2:1 ratio (lysate:loading buffer) and boiled for 5 minutes. Antibodies against

pSer727 STAT1 (Kovarik et al., 1999; Cell signaling, 9177), pY701 STAT1 (Cell Signaling, 9167S and 7649), STAT1 (Santa Cruz, sc-

346), CDK8 (Santa Cruz, sc-1521; Cell signaling, 4101S), CDK19 (Sigma Aldrich, HPA007053), IRF1 (Cell Signaling 8478T), tubulin

(Cell signaling, 2144S; Sigma Aldrich, T9026), MED12 (Bethyl, A300-774A), MED13 (Santa Cruz, sc-515557) and CCNC (Bethyl,

A301-989A) were used for western blotting.

Cytotoxicity assay
Cells were seeded on a 96well plate with 9000 cells per well. The next day the cells were treated with 100 nMCA for 2, 4, 6 and 8 hours

or left untreated. The amount of living cells was assessed by crystal violet staining (0.1%crystal violet, 2%methanol in H2O) for 1 hour

in the dark. Cells were then washed twice with PBS, air-dried and subsequently incubated with 100 mL solubilization buffer (50:50

mixture of 0.1 M NaH2PO4, pH = 4.5 and 50% ethanol) per well. Crystal violet intensity, that was proportional to the number of alive

cells, was determined at 595 nm using a microplate reader (BioTek, Synergy H1). n = 8 per condition, statistical testing was done

using One-way ANOVA testing in Prism 6 (GraphPad Software).

Vesicular stomatitis virus (VSV) infection assay
VSV infection and survival assays was performed as described (Bancerek et al., 2013). Briefly, 3x104 cells were seeded on 6-well

plates. 4 hours after seeding the medium was exchanged to medium containing siRNA against non-targeting control or CDK19

(50 pmol). After 48 h cells were re-seeded on 96well plates, 3500 cells per well. Four hours after seeding the medium was replaced

with newmedium that was supplemented with fresh siRNA and IFN-g in two-fold serial dilutions starting at 10 units. After 24 hours the

mediumwas replaced with mediumwithout siRNA and without IFN-g, and VSVwas added at a multiplicity of infection (MOI) of 0.1. In

case of CDK19-KO, CDK19-WT and CDK19-KDead cells 4000 cells were seeded on 96well plates. Four hours after seeding medium

was replaced with medium supplemented with IFN-g in two-fold serial dilutions starting at 10 units. After 24 hours the medium was

replaced with medium without IFN-g, and VSV was added at a multiplicity of infection (MOI) of 0.1. After incubation of cells with VSV

for 39 h, cells were washed twice with PBS and stained with crystal violet (0.1% crystal violet, 2%methanol in H2O) for 1 h in the dark.

After 2 additional washes, cells were incubated with 100 mL solubilization buffer (50:50 mixture of 0.1 M NaH2PO4, pH = 4.5 and 50%

ethanol) per well. Crystal violet intensity, that was proportional to number of surviving cells, was determined at 595 nm using amicro-

plate reader (BioTek, Synergy H1). EC50 calculations were calculated using the AAT-Bioquest EC50 (https://www.aatbio.com/tools/

ec50-calculator), with minimum response set to zero.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq experiments were carried out in triplicates; GRO-Seq and PRO-Seq experiments were performed in duplicates. Statistical

analysis of RNA-Seq, GRO-Seq and PRO-Seq experiments is described in the corresponding parts of the section Method Details.

DATA AND CODE AVAILABILITY

The accession number for GRO_Seq and RNA_Seq data reported in this paper is SRA: PRJNA542065. The accession number for the

PRO_Seq data reported in this paper is GEO: GSE129501.

Unprocessed western blot images of this study are available at Mendeley under: https://doi.org/10.17632/crj8f3j63z.1
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Chapter 5

Mediator Kinase Activity in Response to Serum

5.1 Preamble

This chapter is a work in progress towards submission of a manuscript related to the effects

of Mediator kinase inhibition during serum response. A preliminary title for this manuscript along

with an author list is as follows:

Mediator kinases Target Signaling Pathways Involved in Cell Proliferation during

Serum Reponse

Jonathan D. Rubin, Justin Moser, Sabrina L. Spencer, Robin D. Dowell, Dylan J. Taatjes

5.2 Introduction

Gene regulation is an essential process that is required for proper cellular function. This

regulation occurs primarily at the transcriptional level and involves the interplay of many key

factors. Among these factors is a large protein complex called Mediator. Mediator is necessary

for regulated transcription of protein coding genes and acts as a molecular bridge between distal

transcription factor (TF) binding events and the pre-initiation complex (PIC) containing RNA-

polymerase II (RNAPII).

In addition to the scaffolding functions of the Mediator complex, Mediator can also reversibly

associate with four-subunit Mediator kinase modules that contain enzymatic activity. In humans,

there are two Mediator kinases - CDK8 and its paralog CDK19. Although not much is known about

CDK19, CDK8 has been shown to be overexpressed in several cancers and plays roles in general
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transcription as well as cellular signalling (Steinparzer 2018, others). While the mechanisms by

which Mediator kinases exert their functions are unclear, even less is known about the kinase

activity associated with them.

Studying Mediator kinase activity has received special attention recently because of its po-

tential use as a therapeutic target in cancer (refs). CDK8 is often overexpressed in colorectal

tumors and its overexpression correlates with poor patient outcomes (refs). While total protein

knockdown/knockout is difficult to achieve in a clinical setting, inhibiting Mediator kinase activity

with a small molecule is more tractable. Because of this, there has been a drive to screen small

molecules for their potential to inhibit Mediator kinase activity (refs). One such molecule, called

Cortistatin A (CA), was shown to be both extremely potent and specific for inhibiting Mediator

kinase activity (Pelish).

Because of its potential roles in cancer, some attention has been given to how Mediator

kinases could affect cellular proliferation. One such study determined that the CDK8 protein

itself played important roles during serum response. This study however, performed whole protein

knockdown and therefore could not decouple the roles of Mediator Kinase activity vs. Mediator

kinase protein. Additionally, several studies have recently focused on the role of Mediator kinase

activity within cellular signaling pathways. Studies have shown that Mediator kinases play roles in

the interferon response (Steinparzer 2018), Glycolysis (espinosa ref), and p53 activation (Audetat

ref). We therefore sought to characterize the effects of Mediator kinase inhibition within the context

of serum response. This model system mimics cellular proliferation and known nutrient deprivation

seen in tumors before angiogenesis.

In this study, we performed a variety of -omics experiments in the presence of CA during

serum response at many early (15min, 30min, 45min) and late (3hrs, 6hrs, 18hrs) timepoints. We

performed 1) nascent RNA sequencing to probe for immediate effects on gene transcription, 2)

RNA-seq to quantify downstream gene expression, 3) phosphoproteomics to identify key factors

responsible for observed changes, 4) metabolomics to measure changes in cellular metabolism,

and 5) proliferation assays to determine cell outcomes. Compared to the normal response to
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serum, cells treated with the Mediator kinase inhibitor CA exhibited defects in the timing of gene

transcription and repression of protein phosphorylation involved in proliferative signaling. These

phosphorylation events had an impact on cell proliferation and flux through the TCA cycle during

serum response. Our results suggest that inhibiting Mediator kinase activity may affect colon cancer

cell proliferation. In contrast to previous studies on normally(?) growing cells (ref liver metastasis

paper), we show a decrease in cellular proliferation during serum response suggesting context specific

cellular outcomes. Whether these different cellular contexts are more or less representative of

cellular response in vivo is still an open question but we show here evidence for further study in

animal models and a potential explanation for poor outcomes when transition from cell culture

models to animal models.

5.3 Results

5.3.1 Serum induction results in temporally coordinated gene transcription

We performed nascent sequencing (GRO-Seq and PRO-Seq) at several time points on cells

during serum response (0min, 15min, 30min, 45min) treated with the Mediator kinase inhibitor

Cortistatin A (CA) or DMSO control. To first determine how cells temporally regulate cellular

processes in response to serum, we performed adjacent timepoint comparisons (i.e. 0min vs. 15min,

15min vs. 30min, 30min vs. 45min) using DE-Seq and GSEA (Figure 5.1). As expected, the

immediate serum response involved the differential transcription of hundreds of genes (910 up,

602 down) related to MAPK signaling (Figure 5.1a). We also observed a significant decrease in

mitochondrial translation which is a typical response to cellular stress. A secondary response

between 15 and 30min involved a relatively equal number of differentially transcribed genes (1333

up, 520 down) with an overall decrease in the magnitude of fold change of differentially transcribed

genes. In this secondary response we observed the activation of cholesterol biosynthesis mediated

by the TF SREBP Figure 5.1b. We also observed even greater decreases to translation pathways.

Finally, at later timepoints, we observed a more modest change in gene transcription (226 up,
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389 down) and the activation of mitochondrial translation Figure5.1c. Additionally, we observed

decreases in SREBP mediated cholesterol biosynthesis and decreases in G1/S specific transcription

suggesting cells might be escaping G0 arrest. These results point to a highly coordinated activation

and inhibition of key pathways needed for cells to escape G0 and re-enter into the cell cycle.
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Figure 5.1: Serum Effects on Gene Transcription
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5.3.2 Serum results in the phosphorylation of thousands of sites within signaling

networks related to cell proliferation

To probe for direct targets of Mediator kinases, we performed phosphoproteomics at 45min

serum +/- CA. To determine the phosphorylation events that are important for the cellular response

to serum, we first compared starved cells to cells induced with serum. As expected we observed

differential phosphorylation of thousands of sites (3637 up, 2604 down; Figure 5.2a). To determine

which pathways these sites were involved in, we used ingenuity pathway analysis (IPA). We found

enrichment of many signaling pathways related to cell proliferation(Figure 5.2b). These pathways

exhibited increased phosphorylation as evidenced by positive z-scores . We then used the molecule

activity predictor function within IPA to visualize flux through the most significant pathway Rho

GTPase signaling. We observed predicted activation of many components of this signaling pathway

including the activation of the AP-1 complex containing Fos and JUN TFs.
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Figure 5.2: Serum Effects on Protein Phosphorylation
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5.3.3 Serum results in increased abundance of hundreds of metabolites and flux

through the TCA cycle

To probe the sustained effects of Mediator kinase inhibition, we performed metabolomics at

later timepoints. To first determine the effects of serum, we compared starved cells with serum

induced cells after 3hrs and 18hrs. We observed expected increases in hundreds of metabolites

especially within the nucleotide, lipid, and amino acid superfamilies of molecules (Figure 5.3a). We

also observed decreases in carbohydrate metabolite abundances consistent with cells increasing flux

through glycolysis and the TCA cycle. Consistent with this observation, we see significant increases

in key intermediates within the TCA cycle (Figure 5.3b).
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Figure 5.3: Serum Effects on Cell Metabolism
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5.3.4 Late gene expression timepoints show cells maintain expression of genes

related to RNA processing and DNA replication

To determine the gene expression patterns of cells after 6hrs of serum induction, we performed

RNA-Seq experiments. Comparing the starvation to serum conditions, we found the differential

expression of thousands of genes (3929 up, 3452 down) Figure 5.4a. Analyzing these gene sets with

GO enrichment, We recover RNA processing and DNA replication pathways suggesting cells are

beginning to transition into S-Phase (Figure 5.4b). Within the differentially decreased set of genes,

we observe enrichment of RNAPII transcription pathways and cholesterol biosynthesis.
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Figure 5.4: Serum Effects on Gene Expression

5.3.5 Inhibition of Mediator kinases during serum response results in temporal

dysregulation of gene transcription

Upon full characterization of the cellular response to serum, we next sought to determine

the impact of Mediator kinase inhibition within the serum response. We analyzed our nascent

sequencing data across treatments at identical time points after serum induction (i.e. DMSO vs.
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CA at t=0,15,30,45min). We observed differential transcription of several hundred genes using DE-

Seq spanning across the 4 measured timepoints Figure 5.5. Performing GSEA on these timepoints

revealed interesting temporal effects of Mediator kinase inhibition. At 0min serum (starvation) we

observed decreases in pathways associated with histone modification Figure 5.5a. We also observed

changes to pathways that are known to be affected by Mediator kinases such as interferon signaling

and TGF-β signaling in addition to the downstream effector SMAD family of TFs. Upon 15min

induction with serum, we saw the upregulation of SREBP-mediated cholesterol biosynthesis (Figure

5.5b) - a pathway upregulated at 30min when only observing serum effects (Figure 5.1b). SREBP

has been shown to be regulated by Mediator kinases and these results suggest defects in the timing

of its activation following serum induction and CA treatment. At the 30min timepoint, we also

observed dysregulation of cholesterol biosynthesis (Figure 5.5c), however at 45min we see a shift

in pathways to exclusively repressed pathways related to nucleotide metabolism and translation

Figure 5.5d. These results suggest that Mediator kinases are key players in regulating the temporal

cellular response to serum.
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Figure 5.5: Mediator Kinase Inhibition Effects on Gene Transcription

5.3.6 Mediator kinases phosphorylate proteins within cell proliferative signaling

networks

To identify pohsphorylation sites that could explain the difference observed after Mediator

kinase inbibition, we next analyzed the phosphoproteomics data across treatments (DMSO vs.

CA) at 45min serum induction. We observed differential phosphorylation of thousands of sites

(805 up, 1403 down). Because this dataset deals with inhibition of Mediator kinases, we focused

on the set of sites that exhibited decreased phosphorylation as putative direct targets of Mediator

kinases. When we analyzed this set using IPA, we found enrichment of the same proliferative

signaling pathways that increased in phosphorylation with serum alone (Figure 5.6b). Performing

molecule activity prediction within IPA, we found that signaling through Rho family GTPases was

significantly reduced following Mediator kinase inhibition with members of the AP-1 complex and
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several upstream regulators identified as potential direct targets of Mediator kinase activity (Figure

5.6c).
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p-adj < 0.01c

Figure 5.6: Mediator Kinase Inhibition Effects on Protein Phosphorylation
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5.3.7 Mediator kinase inhibition results in defects in the temporal induction of

JUN and FOSL2

Next, we analyzed the differential transcription of bidirectional transcripts (enhancer RNAs

and promoters) within our nascent data. As expected we observed significant activation of the

serum response factor (SRF) following serum induction. Additionally, we observed activation of

AP-1 related factors JUN and FOSL2 (Figure 5.7a). When comparing the effects of Mediator kinase

inhibition we observed a further activation of SRF and a change in the temporal dynamics of JUN

and FOSL2 as evidenced by the switch in sign of E-Scores between 30min and 45min (Figure 5.7b).

These results confirm the role of Mediator kinases in the temporal regulation of genes during serum

response.

a

b

Figure 5.7: Mediator Kinase Inhibition Effects on TF Activity

5.3.8 At later timepoints, Mediator kinase inhibition results in decreased metabolism

and flux through the TCA cycle

To determine what impacts Mediator kinase inhibition had on metabolism, we next analyzed

our metabolomics dataset across treatments (DMSO vs. CA) at 3hrs and 18hrs after serum in-
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duction (Figure 5.8a). We observed high dysregulation of lipid and amino acid metabolites during

starvation consistent with previous studies tying Mediator kinase activity to the regulation of lipid

metabolism via SREBP (ref). Upon serum induction, we observed global decreases in these same

metabolites. To determine whether these cells exhibited defects in energy metabolism, we focused

on the TCA cycle Figure 5.8b. We observed significant decreases in key intermediates within the

TCA cycle.

5.3.9 Mediator kinase inhibition results in differentially decreased gene expression

of cell division

Examining differences in gene expression +/- CA, we see dysregulation of around 1000 genes

(553 up, 550 down; Figure 5.9a). Performing GO enrichment on both sets of genes we observe

significant decrease in cell division and RNAPII transcription. These results suggest that cells

treated with CA may have proliferation defects following serum induction.
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Figure 5.8: Mediator Kinase Inhibition Effects on Cellular Metabolism
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Figure 5.9: Mediator Kinase Inhibition Effects on Gene Expression

5.3.10 G1/S transition is temporally impaired in cells treated with CA during

serum response

Since we observed a general repression of pathways related to cell proliferation, we sought

to determine the impact of Mediator kinase inhibition on cell cycle progression following serum

response. We first performed FACS using propidium iodide (PI) staining every 6hrs post-serum

addition +/- CA (Fig. 5.10a). We observed that at the earliest timepoint of 6hrs there was no

difference between DMSO and CA treated cells - a majority of both populations were still arrested

in G1/G0. After 12 hours, we noted that both cell populations (treated and untreated) began

transitioning into S-phase, however we began to see a lag with CA-treated cells as compared to

DMSO cells. This lag carried over to the 12 and 18hr with the effects unclear at 24hrs since cells

appeared to have entered a second round of division. To validate this temporal lag specifically

in the transition from G1 to S, we performed EdU staining at the 12hr timepoint +/- CA (Fig.

5.10b). We observed a consistent decrease in DNA synthesis following CA treatment. Finally, to
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determine whether these effects were truly a difference in timing or a shift in cellular populations, we

performed single cell live imaging over a 24hr time course of serum response +/- CA. As a marker

for cell cycle progression, we measured the activity of CDK2 as described previously (Spencer

et al.). In general, we observed a decrease of CDK2 activity following CA treatment up to 24

hours after serum induction (Fig. 5.10c). Plotting average CDK2 activity over time, we see CA

differences starting at 10 hrs after serum (Fig. 5.10d). Next, we clustered individual cell traces

into three clusters of cell behaviors - cycling, non-arrested, and quiescent and observed decreases in

cycling cells and increases in quiescent cells after CA treatment (Fig. 5.10e). Using cell populations

from different wells as technical replicates, we then calculated the relative proportion of each cell

population for each treatment (Fig. 5.10f). We observed that in agreement with our other data,

CA-treated cells show a larger population of non-cycling cells and a decrease in proliferative cells.

Overall, the data agree that cell cycle progression during serum response is impaired in cells treated

with CA.
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Figure 5.10: Mediator Kinase Inhibition Effects on Cell Proliferation
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5.4 Discussion

We show here that Mediator kinase inhibition during serum response results in a lag in cell

cycle progression. We observe defects in the temporal response to serum and decreased phospho-

rylation of signaling pathways related to cell proliferation. At later timepoints, we see decreases in

genes related to cell division and a decrease in TCA cycle intermediates. Quantifying this prolifera-

tion defect in three separate assays, we see that during serum response, Mediator kinase inhibition

results in cell proliferation defects.

Although we make significant strides in understanding the molecular mechanisms underlying

the role of Mediator kinases in cancer cell proliferation, extensive animal studies will need to be

conducted before potential therapies using CA can be administered. Even though animal studies

using Senexin B, a different Mediator kinase inhibitor, did not decrease primary tumor size there

were significant decreases in liver metastasis of colorectal cancer in mouse models. This type of

metastasis is a known cause of mortality among cancer patients. It is unclear whether the results

of this study are due to the difference in binding affinities of Senexin B and Cortsiatin A (1000-fold

stronger binding), or whether this result will remain consistent in studies with CA. If these results

remain the same with CA treatment in mouse models, there could be several explanations. It is

possible that livers experience a higher effective dose of drug as compared to the colon which would

cause proliferation defects to be more pronounced in the liver. It is also possible that metastasized

cells undergo additional transcriptional reprogramming and thus are more susceptible to cellular

stress and therefore are increasingly affected by Mediator kinase inhibition. These mechanism of

cell proliferation defects need to be explored more in mouse models.

Although we and others have shown the effectiveness of Mediator kinase inhibition in colon

cancer cell proliferation, it is still unknown whether the effects of Mediator kinase inhibition are

generalizable across cancer types. Recent studies on AML have shown that Mediator kinase inhi-

bition has an even more pronounced effect on cell proliferation. Other cell types did not exhibit

cell proliferation defects, however we show here that this is potentially due to differences in cellular
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context. Furthermore, preventing cancer metastasis would significantly improve patient outcomes

and it is unclear if Mediator kinase inhibition generally prevents metastasis or if these effects are

cancer type specific.

We present here a data driven mechanism into the role of Mediator kinases in cell cycle

progression during serum response. In contrast to cell studies that inhibit Mediator kinase activity

and observe no changes to cell proliferation, we demonstrate here that within the context of serum

response, HCT116 exhibit defects in cell cycle progression. Recently, a study found that inhibiting

Mediator kinases through a different compound, Senexin B, resulted in decreased tumor metastases

of HCT116 cells in mice. Taken together, these studies point to the potential effectiveness of

Mediator kinase inhibition in the treatment of colon cancer. We note that this was not being

explored due to the lack of an observed effect of Mediator kinase inhibition in cell culture models.

However, the addition of cellular perturbations such as serum response potentially are better mimics

of the cellular environment within an organism. Therefore, adding cellular perturbations to small

molecule screens may increase the success of small molecule discovery that lead to positive outcomes

outside of the cell culture model.

5.5 Methods

5.5.1 Cell Culture and Treatment

HCT116 Cells STR profiling was performed on HCT116 cells obtained from the Espinosa

Lab. Cells were cultured in DMEM with 1x Penn/Strep and 10% FBS. Cells were split at least 1:2

every day to prevent overconfluence. For all experiments, cells were kept to passages below 20.

MCF10A MCF10A expressing DHB-mCherry, H2B-mTurquoise, and mCitrine-p21 were

generated and maintained as described previously[234]. Briefly, cells were grown at 37◦C, 5% CO2,

in DMEM/F12 media supplemented with 5% horse serum, 100ng/mL cholera toxin, 20ng/mL

EGF, 10µg/mL insulin, 0.5µg/mL hydrocortisone, and 100µg/mL of penicillin and streptomycin.

For serum starvation media, 0.3% BSA was added to DMEM/F12 instead of serum and growth
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factors.

Cell Treatments For all treatments, cells received 100nM of cortistatin A (CA) from a

10,000X stock solution. Control cells received the same volume of DMSO per volume of media

(1uL DMSO/10mL media). Treatments during starvation (pre-incubation) were administered by

directly pipetting into the cell media. Treatments at the time of serum response were administered

by first adding CA to pre-warmed serum containing media followed by the addition of this media

to cells.

Serum Starvation Before starvation, cells were washed three times with 1x PBS. Total

starvation time for HCT116 cells was 40hrs, 48hrs for MCF10A cells. Up

5.5.2 Nascent Sequencing

Nuclei Isolation Nuclei isolation was performed as described in [18] GRO-Seq run

on, enrichment, and library preparation Nuclei were incubated at 37◦C with BrUTP, CTP,

ATP, and GTP for 5min. RNA was then isolated and nascent RNA enriched using anti-BrdU

beads from Santa Cruz () two times. From purified RNA, libraries were prepared using NEB Next

Ultradirectional kit ().

PRO-Seq run on, enrichment, and library preparation Nuclei were incubated at

37◦C with Biotin-CTP, ATP, GTP, UTP for 3 min. RNA was then isolated and nascent RNA

enriched using magnetic streptavidin beads from XXX three times. Purified nascent RNA was

then prepared into a sequencing library using NEB Next Ultradirectional II kit.

Read QC and Mapping Read QC and mapping were performed using the Nascent-flow

pipeline v1.1 (https://github.com/Dowell-Lab/Nascent-Flow). Bam files from different sequencing

runs were first checked for quality using read duplication statistics and complexity from rseqc and

preseq and visualization in IGV. Reads from samples from different lanes and sequencing runs that

were of good quality were then concatenated and the Nascent-Flow pipeline v1.1 re-run.

Computational Analysis Differential gene transcription was performed using the DE-

Seq2 package with batch correction provided as a separate column in the design matrix. GSEA
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was performed using the PreRanked option with genes ranked on fold change. TFEA (v1.1.4) was

run on samples specifying the same batches and default parameters.

5.5.3 RNA-Seq

Sample Preparation 10 million cells were seeded on 15cm plates the day before the ex-

periment. Cells were then starved for a total of 40hrs with a pre-incubation with CA or DMSO

at 39hrs. Three replicates were collected at 40hrs starvation for cells pre-incubated with DMSO

using trizol extraction. Cells were then treated with pre-warmed serum-containing media with an

additional dose of either CA or DMSO. After 6hrs of serum response, cells were collected using a

trizol extraction. RNA from trizol extracts was purified using a chloroform extraction step followed

by DNAse treatment and a P30 column to remove free nucleotides and buffer exchange. RNA was

then run on a tapestation to verify RIN numbers and measure concentration. As input into library

preparation, we normalized all RNA to contain 1ug of input. We next added 2uL of 1:100 diluted

ERCC spike-in as per manufacturer’s protocol (). Libraries were then prepared from samples fol-

lowing the Poly-A enrichment kit from NEB () and the NEB Ultradirectional II kit with some

modifications to select for larger RNA fragments.

Read QC and mapping Raw fastq files were processed using the nf-core rnaseq package

v1.4.2 (https://github.com/nf-core/rnaseq) Computational Analysis Gene expression analysis

was performed with DE-Seq2 as described above. GO enrichment analysis was performed in Python

3 using the Goatools package v.1.0.3.

5.5.4 Live Cell Imaging

Time-lapse Imaging For imaging, cells were plated onto a collagen-coated 96-well glass-

bottom plate (Cellvis Cat. No. P96-1.5H-N). At least 24h after plating, cells were washed twice

with serum starvation media, and then incubated in serum starvation media. Cells were then

maintained in this media for 39h, at which point the media was supplemented with either DMSO

or Cortistatin A at a final concentration of 100nM for a 1h incubation. Cells were then released
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into phenol-red free full growth media supplemented with DMSO or 100nM Cortistatin A and

imaged for at least 24h on a Nikon TiE in a humidified, temperature controlled incubator (37◦C,

5% CO2). Total exposure times for all channels (CFP, YFP, mCherry) were limited to 350ms to

limit phototoxicity.

Computational Analysis Time-lapse microscopy images were processed as described pre-

viously (doi: 10.1016/j.cell.2016.05.077). The code used for tracking can be found at: https://github.com/scappell/Cell tracking.

Custom Python3 scripts were used to generate boxplots, line plots, and heatmaps. Cell traces were

clustered based on CDK2 activity using Ward method and a maximum cluster size of 3. Differences

in the percentage of cells within each cluster were calculated using a t-test assuming independent

samples from the individual wells present in each experiment.

5.5.5 Flow Cytometry

Propidium Iodide 1 million cells were plated in 10 cm plates the day before starting the

experiment. Cells were starved and pre-incubated as previously described. At 6, 12, 18, and 24hrs,

cells were harvested using trypsing and fixed in 60% ethanol. Fixed cells were then stained with

propidium iodide following manufacturer’s protocol using the XXXXX kit (). Cell sorting was then

performed on a BD Biosciences Celeste machine using the BD software.

EdU Staining Cells were treated as described in the previous section. Three replicates were

collected at 12hrs after serum addition. EdU staining was performed according to manufacturer’s

protocol using the abcam kit (iFluor 488). Cells were sorted using the same instrument as the

section above.

Computational Analysis Raw .fcs files were imported using the python package FlowCy-

tometryTools v0.5.0. Raw PI data was transformed using hlog with parameters b=100000. Gating

for the PI experiment was done by eye, choosing cutoffs that matched two peaks (G1 and G2, 1000

and 3000 respectively). Raw data from the EdU experiment was transformed using tlog with de-

fault parameters and gating was performed by plotting a scatter using FSC-A and FSC-H channels

to select for single cells.
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5.5.6 Metabolomics

The following methods were obtained through Metabolon. Sample Accessioning Fol-

lowing receipt, samples were inventoried and immediately stored at -80oC. Each sample received

was accessioned into the Metabolon LIMS system and was assigned by the LIMS a unique identifier

that was associated with the original source identifier only. This identifier was used to track all

sample handling, tasks, results, etc. The samples (and all derived aliquots) were tracked by the

LIMS system. All portions of any sample were automatically assigned their own unique identifiers

by the LIMS when a new task was created; the relationship of these samples was also tracked. All

samples were maintained at -80oC until processed.

Sample Preparation Samples were prepared using the automated MicroLab STAR R© sys-

tem from Hamilton Company. Several recovery standards were added prior to the first step in the

extraction process for QC purposes. To remove protein, dissociate small molecules bound to protein

or trapped in the precipitated protein matrix, and to recover chemically diverse metabolites, pro-

teins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder

2000) followed by centrifugation. The resulting extract was divided into five fractions: two for

analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode elec-

trospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one

for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved

for backup. Samples were placed briefly on a TurboVap R© (Zymark) to remove the organic solvent.

The sample extracts were stored overnight under nitrogen before preparation for analysis.

QA/QC Several types of controls were analyzed in concert with the experimental samples:

a pooled matrix sample generated by taking a small volume of each experimental sample (or alterna-

tively, use of a pool of well-characterized human plasma) served as a technical replicate throughout

the data set; extracted water samples served as process blanks; and a cocktail of QC standards

that were carefully chosen not to interfere with the measurement of endogenous compounds were

spiked into every analyzed sample, allowed instrument performance monitoring and aided chro-
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matographic alignment. Tables 1 and 2 describe these QC samples and standards. Instrument

variability was determined by calculating the median relative standard deviation (RSD) for the

standards that were added to each sample prior to injection into the mass spectrometers. Overall

process variability was determined by calculating the median RSD for all endogenous metabolites

(i.e., non-instrument standards) present in 100% of the pooled matrix samples. Experimental sam-

ples were randomized across the platform run with QC samples spaced evenly among the injections,

as outlined in Figure 1.

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-

MS/MS) All methods utilized a Waters ACQUITY ultra-performance liquid chromatography

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer inter-

faced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated

at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents compatible

to each of the four methods. Each reconstitution solvent contained a series of standards at fixed

concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed us-

ing acidic positive ion conditions, chromatographically optimized for more hydrophilic compounds.

In this method, the extract was gradient eluted from a C18 column (Waters UPLC BEH C18-

2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA)

and 0.1% formic acid (FA). Another aliquot was also analyzed using acidic positive ion conditions,

however it was chromatographically optimized for more hydrophobic compounds. In this method,

the extract was gradient eluted from the same afore mentioned C18 column using methanol, ace-

tonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall higher organic content.

Another aliquot was analyzed using basic negative ion optimized conditions using a separate ded-

icated C18 column. The basic extracts were gradient eluted from the column using methanol and

water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed

via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150

mm, 1.7 µm) using a gradient consisting of water and acetonitrile with 10mM Ammonium Formate,

pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic
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exclusion. The scan range varied slighted between methods but covered 70-1000 m/z. Raw data

files are archived and extracted as described below.

Bioinformatics The informatics system consisted of four major components, the Labora-

tory Information Management System (LIMS), the data extraction and peak-identification software,

data processing tools for QC and compound identification, and a collection of information inter-

pretation and visualization tools for use by data analysts. The hardware and software foundations

for these informatics components were the LAN backbone, and a database server running Oracle

10.2.0.1 Enterprise Edition. LIMS The purpose of the Metabolon LIMS system was to enable

fully auditable laboratory automation through a secure, easy to use, and highly specialized system.

The scope of the Metabolon LIMS system encompasses sample accessioning, sample preparation

and instrumental analysis and reporting and advanced data analysis. All of the subsequent software

systems are grounded in the LIMS data structures. It has been modified to leverage and interface

with the in-house information extraction and data visualization systems, as well as third party

instrumentation and data analysis software.

Data Extraction and Compound Identification Raw data was extracted, peak-identified

and QC processed using Metabolon’s hardware and software. These systems are built on a web-

service platform utilizing Microsoft’s .NET technologies, which run on high-performance application

servers and fiber-channel storage arrays in clusters to provide active failover and load-balancing.

Compounds were identified by comparison to library entries of purified standards or recurrent un-

known entities. Metabolon maintains a library based on authenticated standards that contains

the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including

MS/MS spectral data) on all molecules present in the library. Furthermore, biochemical identifi-

cations are based on three criteria: retention index within a narrow RI window of the proposed

identification, accurate mass match to the library +/- 10 ppm, and the MS/MS forward and reverse

scores between the experimental data and authentic standards. The MS/MS scores are based on

a comparison of the ions present in the experimental spectrum to the ions present in the library

spectrum. While there may be similarities between these molecules based on one of these factors,
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the use of all three data points can be utilized to distinguish and differentiate biochemicals. More

than 3300 commercially available purified standard compounds have been acquired and registered

into LIMS for analysis on all platforms for determination of their analytical characteristics. Addi-

tional mass spectral entries have been created for structurally unnamed biochemicals, which have

been identified by virtue of their recurrent nature (both chromatographic and mass spectral). These

compounds have the potential to be identified by future acquisition of a matching purified standard

or by classical structural analysis.

Curation A variety of curation procedures were carried out to ensure that a high quality

data set was made available for statistical analysis and data interpretation. The QC and curation

processes were designed to ensure accurate and consistent identification of true chemical enti-

ties, and to remove those representing system artifacts, mis-assignments, and background noise.

Metabolon data analysts use proprietary visualization and interpretation software to confirm the

consistency of peak identification among the various samples. Library matches for each compound

were checked for each sample and corrected if necessary.

Metabolite Quantification and Data Normalization Peaks were quantified using area-

under-the-curve. For studies spanning multiple days, a data normalization step was performed to

correct variation resulting from instrument inter-day tuning differences. Essentially, each compound

was corrected in run-day blocks by registering the medians to equal one (1.00) and normalizing

each data point proportionately (termed the “block correction”; Figure 2). For studies that did not

require more than one day of analysis, no normalization is necessary, other than for purposes of data

visualization. In certain instances, biochemical data may have been normalized to an additional

factor (e.g., cell counts, total protein as determined by Bradford assay, osmolality, etc.) to account

for differences in metabolite levels due to differences in the amount of material present in each

sample.

Computational Analysis Additional computational analysis was performed in Python3

using networkx v2.4 in order to visualize the abundances or differences in abundances of metabolites.

Ingenuity pathway analysis (IPA) analysis was performed manually using version 51963813.
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5.5.7 Phosphoproteomics

Computational Analysis Post-processing of data was performed in R using the limma

package lmFit and eBayes methods with Benjamini Hochberg adjusted p-value calculation.

5.6 Future Work

This manuscript describes findings related to the effects of Mediator kinase activity on cell

proliferation. One major aspect that is not discussed in this work is the role of Mediator kinase

activity in general transcription during serum response. While significant analyses has been ac-

complished towards answering this question, these results are still in a preliminary stage and not

ready for publication. Preliminary analysis suggest that there is little to no effect on pausing via

pause index calculation and elongation rate using groHMM. Additionally, splicing analysis on the

RNA-Seq dataset has been performed but these results are also in a preliminary stage. These

figures are not included in this thesis because of remaining questions about the validity of these

analyses.

In addition to a thorough probe into the effects of Mediator kinase activity on transcription,

this study lacks mechanistic validation through experimental approaches. Which of the identified

phosphorylation sites are most important for the observed effect of Mediator kinases? Questions like

this, while would be invaluable to address likely do not have straightforward answers. Validation

of one or several sites would add a tremendous amount to this work yet it is entirely possible and

more likely that a combination of phosphorylation events lead to the observed effects of Mediator

kinase inhibition on cell proliferation.

Finally, as the goal of these basic research projects are to address issues in human health,

further exploration into whether CA (or Mediator kinase inhibition generally) are good therapeutic

strategies to address cancer cell proliferation or metastasis. This study provides good evidence

to support studies in animal models. While normally growing HCT116 cells do not respond to

CA treatment, within the context of serum response, we show that they do. Serum response is
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possible more representative of a growing tumor microenvironment as these often become deprived

of nutrients as they rapidly grow and need to generate blood vessels via angiogenesis to extract

more nutrients from the body.



Chapter 6

Conclusions

6.1 Overview

Throughout this thesis, I have presented the results of several projects investigating transcrip-

tion factor (TF) activity and Mediator kinase activity. In the first two chapters, computational

methods were designed to quantify TF activity in a high-throughput manner in sets of perturbation

data. These methods were then applied to subsequent studies presented in the next two chapters.

Overall, this thesis dealt with investigating the mechanisms of gene regulation at the transcriptional

stage.

6.2 MD-Score

The motif displacement score (MD-Score) is a metric for quantifying the activity of TFs within

nascent sequencing data. The method works by first identifying sites of bidirectional transcription

which are putative sites of RNA Polymerase II (RNAPII) loading and initiation. Therefore these

are sites of active RNAPII recruitment presumably accomplished by functional binding of a TF.

By measuring the co-localization of bidirectional sites with TF motifs, we infer the association of

that TF with functional binding events. Comparing this MD-Score across perturbations, we obtain

the differential activation of TFs following treatment.

The caveats with this technique are that it relies on the binary presence or absence of bidi-

rectional sites and cannot take into account bidirectional sites that change in transcription levels.

Additionally, the MD-Score approach has no inherent way to handle multiple replicates. Finally,
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the MD-Score approach uses a fixed cutoff to determine whether a TF motif is close enough to a

bidirectional site that it is considered co-localized. These caveats are addressed somewhat in the

TFEA implementation of this approach.

In addition to the development of the MD-Score, this project also involved validation of

bidirectional functionality. Several key analyses were performed that increase the validity of using

bidirectionals sites as readouts of functional TF binding. One such analysis determined that the

enhancer mark H3K27ac was more associated with bidirectionals than other histone modifications.

More importantly, we found that the transcriptional level of eRNAs correlated positively with the

transcription of the nearest gene. Although it is not always the case that the nearest gene to an

enhancer is it’s target, the assumption is that on average this is the case. This analysis was done

by comparing the transcription of eRNA sites and target gene transcription across cell types. [look

at paper again to verify how this was done].

6.3 TFEA

Transcription factor enrichment analysis (TFEA) was meant to improve upon the foundation

that was built by the MD-Score approach. TFEA sought to address the main concerns regarding

the MD-Score method including the detection of differences in bidirectional transcription levels and

the incorporation of replicates into the analysis pipeline. Additionally, TFEA removed the need for

fixed threshold cutoffs to determine motif proximity by incorporating an exponential decay function

scaled by the background distribution of motifs.

TFEA works on two datasets - a treatment and a control. First, TFEA generates a list of

consensus regions of interest (ROI) if these are directly measured from the input datasets. Instead

of performing the classic region merge or intersect techniques, we developed a probabilistic merging

strategy called muMerge that assumes the underlying distribution of reads over these regions is

normal. Once a consensus list of ROI are generated, TFEA then ranks regions based on the p-

value of differential read coverage generated by the DE-Seq R package. Next, for each TF motif,

TFEA first scans ROIs for motif hits, then calculates an enrichment curve that traverses the ranked
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list of ROIs increasing in value depending on the distance of the motif hit to the center of the ROI.

The motif enrichment is then quantified as the area between the calculated enrichment curve and the

expected background curve assuming a uniform distribution of motif hits (the diagonal). Finally, to

calculate statistical significance, the ROI rank are shuffled and enrichment recalculated 1000 times

to obtain an empirical background distribution of enrichment scores. The observed enrichment

score is then compared to this background distribution to obtain a p-value.

We rigorously benchmarked the performance of TFEA against comparable methods including

the MD-Score approach, the MDD-Score (a variant of the MD-Score approach), and AME. We found

that TFEA was better at separating true TF activation signal from background noise in nascent

datasets. Using simulated data, we showed that TFEA can utilize motif positional information

to improve its sensitivity, however in the absence of that signal, TFEA performs on par with

non-positional enrichment methods (AME).

Once we determined that TFEA performance rivaled or improved upon existing techniques,

we then sought to test it on a variety of datasets. The MD-Score approach relied heavily on the

accuracy obtained by detecting bidirectionals in nascent data however TFEA was able to detect

activation of known TFs following perturbation in CAGE-Seq, EP300 ChIP-Seq, H3K27ac ChIP-

Seq, and DNA accessibility assays (DNAse-Seq and ATAC-Seq). Further, we tested TFEA on time

series datasets and were able to temporally unravel complex regulatory networks in response to

LPS and dexamethasone treatment. We observed rapid (5min) activation of the glucocorticoid

receptor after treatment with dexamethasone, the fastest reported activation of a TF following a

perturbation [is this true?].

TFEA was designed to be a convenient toolbox to perform TF motif enrichment analysis.

Within the software package are implementations to run the MD-Score and MDD-Score alongside

TFEA. To facilitate qualitative assessment of the data, interactive HTML results can be generated

for each TF motif analyzed. TFEA in itself is a hypothesis-generating tool and can assist researchers

in identifying potential targets to pursue within given cellular perturbations or model systems.
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6.4 Mediator kinases within infection signaling

The development of computational approaches for inferring TF activity is directly applicable

to the study of Mediator kinases (CDK8/CDK19). Mediator is a large protein complex that is

essential for regulated gene transcription by RNAPII and works by integrating distal TF binding

events to the general transcription machinery. Mediator kinases can reversibly associate with

Mediator playing roles in general transcription but have also been shown to be key regulators of

TFs in several cellular contexts.

The IFN-γ response is one such context with the main downstream effector, STAT1, being

one of the well validated targets of Mediator kinase activity both in vitro and in cells. Using small

molecule inhibitors of Mediator kinase activity coupled with genetic techniques introducing analog

sensitive mutants into cells, this study showed that the IFN-γ response depended on CDK8 activity

and CDK19 protein.

IFN-γ treatment for 6hrs results in the activation of around 221 genes in mouse embryonic

fibroblasts (MEFs). Concurrent treatment of cells with IFN-γ and CA resulted in decreased activa-

tion of 38 of these IFN genes (with 7 more strongly induced). Although these effects are in part due

to S727 phosphorylation of STAT1, S727A mutants showed similar effects of CA treatment during

the IFN-γ response. Since Mediator kinases are also known to target general transcription factors,

nascent sequencing techniques were employed to determine whether Mediator kinase inhibition had

effects on any particular stage of gene transcription during the IFN-γ response. After 30min of

IFN-γ treatment, genes that exhibited increase in transcription showed increased pausing levels in

cells treated with CA. To determine whether this was due to the activity of CDK8, and whether

these effects would translate to humans, these experiments were replicated in human HCT116 cells

with an analog sensitive CDK8 (asCDK8). Similar effects on pausing was observed in this cell line

when treating cells with the analog 3MB to inhibit asCDK8 activity.

The nascent data was also used to probe the effects of Mediator kinase activity on bidirectional

transcription through the use of the MD-Score with some modifications (see methods for details).
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While the cannonical effectors of the IFN-γ response (STAT and Irf family of TFs) were reliably

induced following IFN-γ treatment, addition of CA (in MEFs) or 3MB (in asCDK8 HCT116 cells)

resulted in decreased activation of these same TFs. This demonstrated that Mediator kinase activity

(specifically CDK8 in HCT116 cells) are responsible for the activation of upstream regulators

involved in the transcriptional response to IFN-γ.

To parse out the relative structural and enzymatic contributions of CDK8 and CDK19 in

this response, an array of RNA-Seq experiments were performed with inducible knockouts (CDK8)

and/or knockdowns (CDK19) and/or CA treatment in addition to a 3hr IFN-γ treatment. As

further proof of its specificity, CA had no effect in the absence of both CDK8 and CDK19. The

CA-specific effects observed in the presence of CDK8 and CDK19 however, could be reproduced with

knockdown of CDK19 indicating that the activity of CDK8 was responsible for these effects. These

results were further replicated (to a lesser extent) with CDK8 inducible knockout. Surprisingly,

effects of CDK19 knockdown were observed that were different than the effects observed by CDK8

inhibition or knockdown. To determine whether the CDK19 played an important role in the anti-

viral response, infection assays were performed in which cells are first pre-treated with IFN-γ then

exposed to viral infection. Upon knockdown of CDK19, significantly less cells survived infection.

This study made significant contributions to the Mediator kinase field showing that CDK8

inhibition directly affected the activity of IFN regulators and that CDK19 also plays important roles

in this cellular response. Although mechanistically, it is still unclear how Mediator kinases exert

their regulatory roles, this study showed that these roles have a direct impact on gene transcription

and cell fate. Furthermore, it rigorously tested the enzymatic and structural roles of Mediator

kinases showing that each could affect gene regulation in different ways. Ultimately, this study

is further evidence that Mediator kinases are important in gene regulation and that the kinase

activity plays important roles in this process.
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6.5 Mediator kinases within cell proliferative signaling

Since Mediator kinases were shown to be involved in cellular signaling and overexpressed

in some cancers, we wondered whether Mediator kinase activity was involved in cell proliferative

signaling. To test this, we performed a multitude of -omics experiments looking at the effects of

Mediator kinase inhibition within the cellular response to serum. Serum response is a model system

to study cellular proliferation and involves a highly complex cellular response as cells deal with the

stress of going from a starved state to one of rapid proliferation. Mediator kinases were shown to

be involved in the serum response in one study, however this study used CDK8 knockdown which,

apart from the many caveats of knockdowns, did not assay kinase activity per se.

Using nascent sequencing, we probed for the changes to gene transcription over time after

serum and during Mediator kinase inhibition. We found that the response to serum was a highly

coordinated event resulting in the temporal activation and inhibition of pathways involved in tran-

scription, translation, and metabolism. When treated with the Mediator kinase inhibitor CA, cells

activated several of these pathways at earlier timepoints relative to control cells. These results sug-

gested that Mediator kinases were in part responsible for the appropriate temporal regulation of

gene transcription. To confirm this result, TFEA performed on this dataset showed premature ac-

tivation of JUN and FOSL2 - components of the AP-1 complex of TFs involved in cell proliferation.

Phosphoproteomics analysis confirmed that Mediator kinases were directly involved in signaling by

Rho GTPases and MAPK. JUN was also detected as a potential direct target of Mediator kinases.

At later timepoints, we measured gene expression changes and cellular metabolism. We found

that in response to serum alone, cells had sustained expression of genes involved in RNA process

and DNA replication suggesting they might be preparing for transition into S-phase. Cells treated

with CA on the other hand showed differentially lower expression of genes related to cell division.

Cellular metabolism revealed that cells treated with CA also exhibited lower flux through the TCA

cycle, a key pathway involved in energy production and cell growth.

To test the impact of Mediator kinase inhibition on cellular proliferation during serum re-
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sponse, we performed propidium iodide (PI) staining, EdU incorporation assays, and live cell imag-

ing. Across all experiments (and two cell types), we found that cells treated with CA showed a lag

in cell cycle progression upon serum induction. We observed these effects up to 24hrs after serum

response, however long term proliferation assays are still required. Overall, this study confirmed

that Mediator kinase activity is directly involved in cell signaling related to proliferation which has

consequences in both gene transcription/expression and cellular metabolism.

6.6 Concluding Remarks

The work presented in this thesis makes significant strides towards understand TF activity

and Mediator kinase activity. Both of these proteins are directly involved in transcription which

is a main regulatory point of gene expression. I first developed computational methods to detect

TF activity. As a consequence, I helped validate that enhancer RNAs in the form of bidirectional

transcripts are functional readouts of TF activity. Furthermore, TF activity signal is present in

histone marks, co-factor binding such as EP300, and chromatin accessibility. I developed a reliable

method that can be widely used by the scientific community.

In addition to my work in inferring the activity of sequence-specific TFs, the investigation of

Mediator kinases represents work on general TFs. In the last two chapters of this thesis, I presented

work detailing the involvement of Mediator kinases in the interferon response and cell proliferative

signaling. These are two key pathways involved in a myriad of cellular processes. Ultimately, these

results suggest that Mediator kinases are essential in cell growth and survival and targeting their

kinase activity could be a valid therapeutic strategy for cancer treatment.
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Appendix A

Mediator Kinases within IFN-γ Supplementary Material

Description: What follows is the supplementary material that accompanied the main

text of the Steinparzer 2018 manuscript. Within it are some figures that I generated including raw

data tracks of genes exhibiting pausing (Figure S2B), eRNA transcription (Figure S3), and various

GSEA analyses (Figure S2F and Figure S5F,G).
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Figure S1 (related to Figure 1). Mediator kinase inhibition impairs IFN-γ-induced gene 
expression independently of STAT1 S727 phosphorylation 
(A) Principal component analysis (PCA) of RNA-Seq experiment described in Figure 1A-E (WT 

MEFs, 0 or 6 h IFN-γ, with or without 1 h CA pre-treatment). Left panel: PCA of three biological 

IFN-γ-stimulated (6-00-1, 6-00-2, 6-00-3) and unstimulated (0-00-1, 0-00-2, 0-00-3) replicates. 

Right panel: PCA of three biological CA-pre-treated IFN-γ-stimulated (6-CA-1, 6-CA-2, 6-CA-3) 

and unstimulated (0-CA-1, 0-CA-2, 0-CA-3) replicates.  

(B) Read counts normalized to library size and composition. Y-axis: The sum of all gene counts 

per sample normalized to library size and composition. X-axis: Samples. Sample 6-00-1 was 

thereby identified as outlier and removed from subsequent analysis. 

(C) Gene expression (pre-mRNA level) changes in WT MEFs upon 6 h IFN-γ treatment (blue, padj 

< 0.05; red, padj > 0.05). Genes with padj < 0.05, log2FoldChange (lfc) ≥ 1, FPKM in IFN-γ 

stimulated samples ≥ 1 were regarded as IFN-γ-induced (199 genes). 

(D) CA has no effects on viability of MEFs in relevant time window. WT MEFs were treated for 2, 

4, 6 and 8 h with CA or left untreated followed by crystal violet staining and absorbance 

measurements at 595 nm (n=8 per time point). 

(E) Principal component analysis (PCA) of RNA-Seq experiment described in Figure 1F-H (WT 

and S727A MEFs, 0 or 3 h IFN-γ, with or without 1 h CA pre-treatment). PCA is shown for three 

biological replicates (replicates 1, 2, and 3) for each treatment.  

(F and G) Effects of CA on expression of IFN-γ-induced gene expression (mRNA level) in WT (F) 

and S727A (G) MEFs. Cells (± 100 nM CA, 1 h pre-treatment) were stimulated with IFN-γ (3 h) 

followed by RNA-Seq and differential expression analyses for effects of CA (blue, padj < 0.05; red, 

padj > 0.05).  
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Figure S2A B
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Figure S2 (related to Figure 2). Mediator kinase inhibition increases RNAPII pausing at IFN-
γ-induced genes in MEFs and human HCT116 cells 
(A – E) GRO-Seq analysis in MEFs (relates to Figure 2A-F). 

(A) Overlap of genes induced upon IFN-γ stimulation for 6 h (mRNA, Figure 1B) and 30 min (GRO-

Seq).  

(B) Overlay (Genome browser view) of replicates of GRO-Seq reads at Irf1 locus for IFN0.Ctrl, 

IFN30.Ctrl and IFN30.CA conditions.  

(C) Western blot (left) showing effect of CA on induction of IRF1 by IFN-γ (60 min). Right: 

quantitative evaluation of Western blot signal. 

(D) Density plot of PI for IFN-γ-stimulated MEFs ± CA. Dot density: red, high; blue, low.  

(E) Median PI and statistical assessment of PI changes for IFN-γ-induced genes (lfc > 0 and padj 

< 0.05, 200 genes). Median PI value shown for each condition (red = highest PI value). Mann-

Whitney U test, p-value ns ≥ 0.05; * < 0.05; ** < 0.01. Note: statistically significant IFN-γ-mediated 

drop in PI from 2.76 (green) to 2.30 (blue), consistent with the read count distribution analysis at 

Irf1 in (B); inhibition of the IFN-γ-mediated drop in PI by CA treatment (2.76, green vs. 2.95, red);  

no effect of CA treatment in cells not stimulated with IFN-γ (2.76 , green vs. 2.72, yellow).  

(F – H) PRO-Seq analysis in HCT116 cells (relates to Figure 2G-J). 

(F) GSEA plot of CDK8as effects on IFN-γ-induced gene set changes as compared to WT cells 

(CDK8as DMSO.IFN vs. WT DMSO.IFN).  

(G) Genome browser view of PRO-Seq reads (pooled replicates) at STAT1 locus in WT and 

CSK8as cells treated with 3MB-PP1 ± IFN-γ stimulation. Red: forward strand, blue: reverse strand. 

PI values are indicated. 

(H) PI distribution upon CDK8 inhibition (CDK8as 3MB.PBS, blue) and not inhibited control (WT 

3MB.PBS, red) for same genes as in Figure 2J. 
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Figure S3
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Figure S3 (related to Figure 3). eRNA counts implicate Mediator kinases in eRNA 
transcription during IFN-γ response 
(A) eRNA traces at two loci in unstimulated (IFN0.Ctrl), IFN-γ-stimulated (IFN30.Ctrl) and IFN-γ-

stimulated CA-treated (IFN30.CA) MEFs. The sequence of the locus, TF motif annotation for the 

sequence (STAT1) and STAT1 motif logo (mouse) are shown.  

(B) eRNA traces at two loci in chromosome 1 in unstimulated (WT.PBS) and 3MB-PP1-treated 

IFN-γ-stimulated (WT 3MB.IFN) WT HCT116 cells, and 3MB-PP1-treated IFN-γ-stimulated 

CDK8as HCT116 cells (CDK8as 3MB.IFN). The sequence of the locus, TF motif annotation for 

the sequence (STAT1) and STAT1 motif logo (human) are shown. 
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Figure S4CA
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Figure S4 (related to Figure 4). Supporting evidence for the role of CDK8, not CDK19, in 
IFN-γ-induced STAT1 AD phosphorylation at S727 
(A) PCR showing inducible CDK8 exon 5 deletion (CDK8-iKO) in CDK8fl-MEFs (regime described 

in Figure 4A).  

(B) Constitutive deletion of CDK19 in clonally selected cells can cause upregulation of CDK8. 

CDK19 was deleted in CDK8fl-MEFs using CRISPR/Cas9, and CDK19-KO cells were clonally 

selected followed by Western blot analysis using STAT1, CDK8, CDK19 and tubulin antibodies. 

CDK8 deletion was induced in CDK19 KO and parental CDK8fl-MEFs in lanes 3 and 4. Note that 

CDK8 was upregulated in CDK19 KO compared to CDK8fl-MEFs (lane 2 vs. 1).  

(C) Quantitation (using Bio-Rad Image Lab) of Western blot shown in Figure 4B to demonstrate 

>90% CDK19 knockdown efficiency. CDK19 signal (normalized to tubulin) is shown as percentage 

of control (siCtrl, 0 IFN-γ).  

(D) A second representative experiment demonstrating a key role of CDK8, not CDK19, in IFN-γ-

induced STAT1 S727 phosphorylation. Left panel shows Western blot analysis, right panel shows 

quantitation of the Western blot. The setting was the same as described in Figure 1C. Similar to 

Figure 1C, siCDK19 did not cause reduction of IFN-γ-induced STAT1 S727 phosphorylation (lane 

6 vs. 3).  

(E) Mediator kinase module subunits are not affected by CDK8-iKO or siCDK19 as revealed by 

immunoblotting for MED12, MED13, CDK8, CDK19, and CCNC.  

(F and G) In vitro kinase assays showing STAT1 phosphorylation by WT CDK8 and analog-

sensitive CDK8 (CDK8as) (i.e. F97G mutant). Purified kinase modules containing WT CDK8 or 

CDK8as were incubated with STAT1 substrate together with [γ-32P]-ATP (F) or [γ-32P]-ATP in the 

presence of the ATP analog NM-PP1 (1-100 µM) (G) and subsequently analyzed by 

autoradiography and coomassie staining of gels. Note that lower NM-PP1 concentrations inhibited 

CDK8as but not WT CDK8 (red frames); higher NM-PP1 concentrations competed with ATP thus 

inhibited also WT CDK8. 

(H) Loading control for STAT1 levels corresponding to Western blot shown in Figure 4E (HCT116 

WT and CDK8as cells).  
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Figure S5
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Figure S5 (related to Figure 5 and 6). CDK8 and CDK19 have distinct effects on 
transcriptional response to IFN-γ 

(A) Overlap of genes induced in siCtrl cells after 3 h of IFN-γ stimulation (siCtrl 3 h IFN vs. siCtrl 

0 h IFN) at mRNA vs. pre-mRNA levels (lfc ≥ 1; padj < 0.05; FPKM in IFN-γ stimulated samples ≥ 

1). 

(B) GSEA overlap between IFN-γ-induced gene set changes at mRNA level (Figure 5C) and in 

GRO-Seq (Figure 2A).  

(C) CA effects on gene expression changes (mRNA level) in the absence of CDK8 and CDK19 in 

cells not stimulated with IFN-γ (siCDK19 CDK8-iKO CA vs. siCDK19 CDK8-iKO). Note that no 

genes significantly (blue) up- or down-regulated by CA were found, similar to IFN-γ-stimulated 

cells (Figure 5F).  

(D) Overlap of IFN-γ-induced genes downregulated by CDK8 knockout (CDK8-iKO) vs. CDK19 

knockdown (siCDK19). Note that only minor fraction of downregulated genes overlap between the 

two conditions.  

(E) GSEA overlap between gene set changes caused by CDK8 knockout (CDK8-iKO vs. siCtrl) 

and CDK19 knockdown (siCDK19 vs. siCtrl) during IFN-γ response. Note that only two gene sets 

are similarly regulated by CDK8 and CDK19. 

(F) GSEA plot of gene set changes caused by CDK8 knockout in cells stimulated with IFN-γ (siCtrl 

CDK8-iKO IFN vs. siCtrl IFN).  

(G) GSEA plot of gene set changes caused by CDK19 knockdown in cells stimulated with IFN-γ 

(siCDK19 IFN vs. siCtrl IFN).  
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Figure S6
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Figure S6 (related to Figure 7). Supporting evidence for kinase-independent role of CDK19 
in IFN-γ-responses 
(A) Assessment of IFN-γ-dependent antiviral response in the absence of CDK19. The panel 

corresponds to Figure 7A and shows percentages of surviving cells. 

(B) Assessment of IFN-γ-dependent antiviral response of CDK19-KO cells rescued with CDK19-

WT or CDK19-KDead. The panel corresponds to Figure 7B and shows percentages of surviving 

cells. 

(C) Western blot showing expression levels of CDK19-WT and CDK19-KDead proteins in rescue 

CDK19-KO cells. CDK8 protein levels were not affected in CDK19-KO cells and rescued cell 

pools. 

(D) Principal component analysis (PCA) of RNA-Seq experiment described in Figure 7C and D. 

PCA is shown for three biological replicates (replicates 1, 2, and 3) for each condition (CDK19-

KO, CDK19-WT and CDK19-KDead, each stimulated with IFN-γ for 3 h).  
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Appendix B

TFEA Supplementary Material

Description: What follows is the supplementary material that accompanied the main

text of the TFEA manuscript. Within it are all datasets used, some additional diagrams detailing

muMerge and the tests performed on muMerge, GC-Correction methods for TFEA, runtime and

memory performance of TFEA, and some additional analyses performed.
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1 Accession Tables

1.1 Figure 3 Accession Table

Target Treatment Data Type Cell Type Accession
Nascent RNA DMSO 1hr GRO-seq HCT116 SRR1105736
Nascent RNA DMSO 1hr GRO-seq HCT116 SRR1105737
Nascent RNA Nutlin 1hr GRO-seq HCT116 SRR1105738
Nascent RNA Nutlin 1hr GRO-seq HCT116 SRR1105739

Supplemental Table 1: Accession numbers used
in Figure 3, data from [1].
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Rubin et al. TFEA

1.2 Figure 5 Accession Table

Target Treatment Data Type Cell Type Accession
Capped RNA LPS 0hr CAGE Macrophage donor2 12796-136F6
Capped RNA LPS 0.25hr CAGE Macrophage donor2 12797-136F7
Capped RNA LPS 0.5hr CAGE Macrophage donor2 12798-136F8
Capped RNA LPS 0.75hr CAGE Macrophage donor2 12799-136F9
Capped RNA LPS 1hr CAGE Macrophage donor2 12800-136G1
Capped RNA LPS 1.3hr CAGE Macrophage donor2 12801-136G2
Capped RNA LPS 2hr CAGE Macrophage donor2 12803-136G4
Capped RNA LPS 2.5hr CAGE Macrophage donor2 12804-136G5
Capped RNA LPS 3hr CAGE Macrophage donor2 12805-136G6
Capped RNA LPS 3.5hr CAGE Macrophage donor2 12806-136G7
Capped RNA LPS 4hr CAGE Macrophage donor2 12807-136G8
Capped RNA LPS 5hr CAGE Macrophage donor2 12808-136G9
Capped RNA LPS 8hr CAGE Macrophage donor2 12811-136H3
Capped RNA LPS 10hr CAGE Macrophage donor2 12812-136H4
Capped RNA LPS 12hr CAGE Macrophage donor2 12813-136H5
Capped RNA LPS 14hr CAGE Macrophage donor2 12814-136H6
Capped RNA LPS 16hr CAGE Macrophage donor2 12815-136H7
Capped RNA LPS 18hr CAGE Macrophage donor2 12816-136H8
Capped RNA LPS 20hr CAGE Macrophage donor2 12817-136H9
Capped RNA LPS 22hr CAGE Macrophage donor2 12818-136I1
Capped RNA LPS 24hr CAGE Macrophage donor2 12819-136I2
Capped RNA LPS 36hr CAGE Macrophage donor2 12820-136I3
Capped RNA LPS 48hr CAGE Macrophage donor2 12821-136I4

Supplemental Table 2: Project numbers used
in Figure 5, data from [6, 4].

1.3 Figure 6 Accession Table

Target Treatment Data Type Cell Type Accession
ATAC Dex 0hr ATAC-seq A549 ENCSR220ASC
ATAC Dex 1hr ATAC-seq A549 ENCSR139OYS
ATAC Dex 4hr ATAC-seq A549 ENCSR288YMH
ATAC Dex 8hr ATAC-seq A549 ENCSR074AHH

2
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ATAC Dex 12hr ATAC-seq A549 ENCSR265ZXX
DNase Dex 0hr DNase-seq A549 ENCSR136DNA
DNase Dex 30min DNase-seq A549 ENCSR406EMB
DNase Dex 1hr DNase-seq A549 ENCSR384KCZ
DNase Dex 2hr DNase-seq A549 ENCSR837VHE
DNase Dex 3hr DNase-seq A549 ENCSR294XUZ
DNase Dex 4hr DNase-seq A549 ENCSR599WJC
DNase Dex 5hr DNase-seq A549 ENCSR565WPR
DNase Dex 6hr DNase-seq A549 ENCSR077EYC
DNase Dex 7hr DNase-seq A549 ENCSR347CEH
DNase Dex 8hr DNase-seq A549 ENCSR660OQE
DNase Dex 10hr DNase-seq A549 ENCSR128IVG
DNase Dex 12hr DNase-seq A549 ENCSR523FJT
EP300 Dex 0hr ChIP-seq A549 ENCSR886OEO
EP300 Dex 5min ChIP-seq A549 ENCSR602BTS
EP300 Dex 10min ChIP-seq A549 ENCSR174FJD
EP300 Dex 15min ChIP-seq A549 ENCSR788VKG
EP300 Dex 20min ChIP-seq A549 ENCSR167QIJ
EP300 Dex 25min ChIP-seq A549 ENCSR044IFH
EP300 Dex 30min ChIP-seq A549 ENCSR260WCE
EP300 Dex 1hr ChIP-seq A549 ENCSR358ELZ
EP300 Dex 2hr ChIP-seq A549 ENCSR770OTI
EP300 Dex 3hr ChIP-seq A549 ENCSR047EVQ
EP300 Dex 4hr ChIP-seq A549 ENCSR145YCX
EP300 Dex 5hr ChIP-seq A549 ENCSR610RKF
EP300 Dex 6hr ChIP-seq A549 ENCSR841ASB
EP300 Dex 7hr ChIP-seq A549 ENCSR467VXG
EP300 Dex 8hr ChIP-seq A549 ENCSR561ZRE
EP300 Dex 10hr ChIP-seq A549 ENCSR792VMN
EP300 Dex 12hr ChIP-seq A549 ENCSR124VXG

H3K27ac Dex 0hr ChIP-seq A549 ENCSR778NQS
H3K27ac Dex 5min ChIP-seq A549 ENCSR734FLK
H3K27ac Dex 10min ChIP-seq A549 ENCSR027BPE
H3K27ac Dex 15min ChIP-seq A549 ENCSR325VCV
H3K27ac Dex 20min ChIP-seq A549 ENCSR864KVZ
H3K27ac Dex 25min ChIP-seq A549 ENCSR480OHP
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H3K27ac Dex 30min ChIP-seq A549 ENCSR102XUM
H3K27ac Dex 1hr ChIP-seq A549 ENCSR242TBH
H3K27ac Dex 2hr ChIP-seq A549 ENCSR614NPG
H3K27ac Dex 3hr ChIP-seq A549 ENCSR350EFV
H3K27ac Dex 4hr ChIP-seq A549 ENCSR543ZVZ
H3K27ac Dex 5hr ChIP-seq A549 ENCSR716XDB
H3K27ac Dex 6hr ChIP-seq A549 ENCSR340NAL
H3K27ac Dex 7hr ChIP-seq A549 ENCSR569IBY
H3K27ac Dex 8hr ChIP-seq A549 ENCSR250EHC
H3K27ac Dex 10hr ChIP-seq A549 ENCSR180YHA
H3K27ac Dex 12hr ChIP-seq A549 ENCSR435JKM
H3K4me1 Dex 0hr ChIP-seq A549 ENCSR636PIN
H3K4me1 Dex 30min ChIP-seq A549 ENCSR593RGY
H3K4me1 Dex 1hr ChIP-seq A549 ENCSR537FVU
H3K4me1 Dex 2hr ChIP-seq A549 ENCSR726MAP
H3K4me1 Dex 3hr ChIP-seq A549 ENCSR171ZJG
H3K4me1 Dex 4hr ChIP-seq A549 ENCSR949IDI
H3K4me1 Dex 5hr ChIP-seq A549 ENCSR225AOO
H3K4me1 Dex 6hr ChIP-seq A549 ENCSR868MLT
H3K4me1 Dex 7hr ChIP-seq A549 ENCSR462JVS
H3K4me1 Dex 8hr ChIP-seq A549 ENCSR404OLV
H3K4me1 Dex 10hr ChIP-seq A549 ENCSR954HUB
H3K4me1 Dex 12hr ChIP-seq A549 ENCSR529YKU
H3K4me2 Dex 0hr ChIP-seq A549 ENCSR410BCN
H3K4me2 Dex 30min ChIP-seq A549 ENCSR215DID
H3K4me2 Dex 1hr ChIP-seq A549 ENCSR692JHM
H3K4me2 Dex 2hr ChIP-seq A549 ENCSR124YCC
H3K4me2 Dex 3hr ChIP-seq A549 ENCSR918VQU
H3K4me2 Dex 4hr ChIP-seq A549 ENCSR834LCU
H3K4me2 Dex 5hr ChIP-seq A549 ENCSR555EAA
H3K4me2 Dex 6hr ChIP-seq A549 ENCSR905REY
H3K4me2 Dex 7hr ChIP-seq A549 ENCSR016PSC
H3K4me2 Dex 8hr ChIP-seq A549 ENCSR774KCU
H3K4me2 Dex 10hr ChIP-seq A549 ENCSR766NHB
H3K4me2 Dex 12hr ChIP-seq A549 ENCSR428DFL
H3K4me3 Dex 0hr ChIP-seq A549 ENCSR203XPU
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H3K4me3 Dex 30min ChIP-seq A549 ENCSR677QYM
H3K4me3 Dex 1hr ChIP-seq A549 ENCSR928FDN
H3K4me3 Dex 2hr ChIP-seq A549 ENCSR252FZA
H3K4me3 Dex 3hr ChIP-seq A549 ENCSR483JJT
H3K4me3 Dex 4hr ChIP-seq A549 ENCSR901AAW
H3K4me3 Dex 5hr ChIP-seq A549 ENCSR524UOX
H3K4me3 Dex 6hr ChIP-seq A549 ENCSR646OPC
H3K4me3 Dex 7hr ChIP-seq A549 ENCSR285FZP
H3K4me3 Dex 8hr ChIP-seq A549 ENCSR618MUP
H3K4me3 Dex 10hr ChIP-seq A549 ENCSR139DGM
H3K4me3 Dex 12hr ChIP-seq A549 ENCSR944WVU
H3K9me3 Dex 0hr ChIP-seq A549 ENCSR775TAI
H3K9me3 Dex 30min ChIP-seq A549 ENCSR109KEL
H3K9me3 Dex 1hr ChIP-seq A549 ENCSR954SQX
H3K9me3 Dex 2hr ChIP-seq A549 ENCSR936UEX
H3K9me3 Dex 3hr ChIP-seq A549 ENCSR354ERB
H3K9me3 Dex 4hr ChIP-seq A549 ENCSR037DAC
H3K9me3 Dex 5hr ChIP-seq A549 ENCSR299MNA
H3K9me3 Dex 6hr ChIP-seq A549 ENCSR032SCO
H3K9me3 Dex 7hr ChIP-seq A549 ENCSR873VJA
H3K9me3 Dex 8hr ChIP-seq A549 ENCSR791BNU
H3K9me3 Dex 10hr ChIP-seq A549 ENCSR013RTF
H3K9me3 Dex 12hr ChIP-seq A549 ENCSR451MJX

Supplemental Table 3: Accession numbers used
in Figure 6, data from [5, 8].
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... ...

a b

c
d

e

Supplemental Figure 1: An example of TFEA HTML results page. (a) Pre-GC correction
showing the E-Score of each motif (y-axis) as a function of GC-content (x-axis). Red line: linear
regression fit; dots colored by the amount to correct. (b) A scatter plot (colored as in a), similar to
an MA-plot, showing the GC-corrected E-Scores (y-axis) vs number of motif hits within regions
(<1.5kb; x-axis) for each motif analyzed. (c) An MA-plot of the ROIs generated from DE-Seq2. (d)
A table listing the inputs, text results, MD-Score and MDD-Score results (as clickable links), as
well as the time taken to complete each step of the TFEA process. (e) A list of motifs that exhibit
positive or negative enrichment ordered by adjusted p-value. Significant motifs appear as red and
have clickable links to individual results pages with more detailed information. Data is HCT116
dataset, as used in Figure 1a[1].
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a

b

c

d e

Supplemental Figure 2: An example of a TFEA individual motif results page. This page
is reached by clicking on the corresponding motif in Figure 1e. (a) Summary statistics for the motif
of interest, in this case p53 from HOCOMOCO v11. (b) Enrichment plot showing (from top to
bottom) the running sum statistic (green line), the individual scores of each ROI (as heatmap),
scatter plot of motif hits within ROIs relative to the reference point (labeled 0), and the ranking
of ROIs based on differential transcription (red: positive; blue: negative). (c) For each quartile,
summarize motif containing ROI within the quartile via Top: Meta plot of read coverage over
ROIs. Bottom: Motif displacement distribution (as heatmap) summarizing the motif positions
relative to the reference point. (Yellow is background to Red at max instances). (d) Forward and
reverse complement position specific scoring matrix of the motif analyzed. (e) Histogram of E-Scores
from randomly shuffling the rank order of ROIs (blue) with true non-corrected E-score (red) and
GC-corrected E-score (green).
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Supplemental Figure 3: Diagrammatic description of the muMerge method (a) The goal
of muMerge is to combine multiple sample regions (light blue boxes) which originate from different
replicates and/or conditions, but are measurements of the same underlying loci µ, into a consensus
set of ROIs. Red and blue lines are hypothetical data. (b) muMerge assumes that each sample
region is an estimate on the location of a genomic loci of interest and models this probability (pi) as
a normal distribution (light blue) with µi equal to the center of each sample region. Subsequently,
a joint probability (pjoint, dark blue) is calculated from the samples, and the estimate for the
consensus position (µestimate) is the maxima of this joint distribution. (c) Finally, to calculate
the best estimate for the width of the ROI, a weighted average of the sample region widths is
calculated. It is assumed that the sample regions closest to the consensus position are the most
accurate representation of the underlying loci, so the weighted average of the widths is calculated
such that more weight is given to the sample regions closer to µestimate.
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Supplemental Figure 4: Tests performed to compare the performance of muMerge with
bedtools merge and bedtools intersect. (a) The first test involves sampling regions from a
single theoretical loci with increasing replicates (light blue). muMerge retains correct length and mu
position, bedtools merge tends to increase ROI length and bedtools intersect tends to decrease ROI
length as more replicates are included. (b) A second test to determine performance when sampling
from two theoretical loci as a function of inter-loci spacing. For closely spaced loci, muMerge
correctly separates the two loci whereas bedtools merge is more likely to generate a single ROI, and
bedtools intersect is more likely to generate multiple separate ROI (in this example, three). For
both tests, top cartoon depicts sequencing data histograms on two strands (blue: positive strand;
red (negative strand). Regions inferred from individual replicates in light blue. ROI ascertained by
muMerge (dark blue), bedtools merge (orange) and bedtools intersect (red) shown for comparison.
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Supplemental Figure 5: Cartoon diagram description of MD-Score method. (a) Cartoon
depicting typical histograms of nascent transcription data for three example regions. Orange dot
is motif location. (b) Tfit called sites of RNA polymerase initiation in each dataset (red, blue) as
called by Tfit[3]. These regions are the inputs to the MD-score approach[2]. (c) Motif displacement
distribution histograms plot position of motif (vertical bars) relative to reference point (labeled
0) for both conditions (red and blue). The MD-Score is the fraction of motif instances within the
inner window (h) divided by the total motif hits in the larger window (H; note H encompasses h).
MD-Scores are calculated independently in each of the two conditions to obtain the difference.
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Supplemental Figure 6: The MD-Score approach only detects gain or loss of transcribed
regions. A given locus in the treatment can arise from either (a) a region of no signal in the control;
or (b) increase in signal at a pre-existing region within the control sample. Importantly, the first
case increases the ∆ MD-Score whereas the second does not alter the ∆ MD-Score.
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Supplemental Figure 7: Cartoon diagram depicting the MDD-Score method. The differen-
tial MD-Score method (referred to as MDD-Score)[9, 7] begins with (a) a collection of regions called
in one or more conditions (red and blue). (b) Regions are ranked by DESeq or DESeq2 p-value
(depending on replicate number) and a cutoff segregates identifies the differentially transcribed
subset. (c) The differential MD-Score is calculated similarly to the MD-Score but between the
differentially transcribed set (black) and the not differentially transcribed (in grey).
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a

c

b

d

DMSO Rep1 vs. Rep2

Supplemental Figure 8: E-Scores are adjusted based on the GC content bias using linear
regression. We observed that motif E-Scores often correlated with their GC-content. (a) Scatter
plot of E-Score (y-axis) vs. GC-content (x-axis) of motifs, comparing replicate 1 vs. replicate 2
(DMSO condition) before GC-correction (red line: linear regression fit). (b) Scatter plot of E-Score
(y-axis) vs. GC-content (x-axis) of motifs after GC correction (red line: linear regression fit). (c)
MA-plot of E-Score (y-axis) vs. Log10 of number of motif hits within regions of interest (x-axis)
before GC correction. (d) MA-like plot of E-Score (y-axis) vs. Log10 of number of motif hits
within regions of interest (x-axis) after GC-correction. These MA-Plots show that the underlying
distribution of E-Scores relative to number of motif hits does not significantly change after GC-
correction. All panels are data in HCT116 DMSO condition (SRR1105736, SRR1105737 [1], dots
are colored by the amount to be corrected due to GC-bias, red outline dots are p-adj < 0.1).
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Supplemental Figure 9: Choosing thresholds for MD-Score, MDD-Score, and TFEA. To
choose a threshold cutoff for the three methods used here, DMSO replicates were compared and
the threshold at which no false positives are obtained was determined. To be conservative, an
additional order of magnitude is added for stringency. We performed this for each method in either
(a) HCT116 or (b) MCF10A cells.

14

212



Rubin et al. TFEA

MD-Score

ΔMD-Score 0.144 0.023

a b

c d

Supplemental Figure 10: The MD-score approach fails to capture p53 after Nutlin treat-
ment in MCF10A cells. The response to Nutlin-3a visualized as Venn diagrams of (a) HCT116
and (b) MCF10a cells shows distinct p53 response, with a larger proportion (in MCF10A cells)
of existing sites of RNA polymerase initiation that respond to Nutlin-3a. In both cases, only
regions with p53 motif within 150 bps of the point of interest (midpoint of ROI) are shown. Motif
displacement distributions of TP53 motif within 1.5 kb of ROI midpoints for (c) HCT116 or (d)
MCF10A cells shows a higher co-localization of p53 in DMSO treated MCF10A cells. Bottom:
MD-Score quantification for each condition followed by the observed ∆MD-Score for the Nutlin-3a
response in each cell type.
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MDD-Score

ΔMDD-Score 0.366 0.223
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Supplemental Figure 11: The MDD-Score method detects p53 following Nutlin treatment
in both cell types. The MDD-Score approach detects p53 response in both (a) HCT116 and (b)
MCF10a cells. By default, a loose DESeq2 p-value of 0.2 is chosen to identify the set of differentially
transcribed ROI. Scatterplots show instances of TP53 motif across ranked ROI for (c) HCT116 and
(d) MCF10A cells. The presence of constitutive TP63 activity leads MCF10a cells to have a higher
background signal around TP53 motifs. Motif displacement distribution heatmaps for (e) HCT116
and (f) MCF10A cells, further emphasize the increased background presence of the TP53 motifin
MCF10A cells. Red is control (DMSO), blue is Nutlin treated. All panels are HCT116 data from
SRR1105736, SRR1105737, SRR1105738, SRR1105739.
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E-Score

a
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Supplemental Figure 12: TFEA detects p53 in both HCT116 cells and MCF10A cells
without the use of fixed thresholds. (a) ROI are ranked by differential transcription. Red:
increased transcription, blue: decreased. (b) Instances of the TP53 motif are detected within ranked
ROIs. (c) TFEA measures motif enrichment as the E-Score, calculated as 2* AUC (ie. area under
the curve) between the running sum of ROI scores (green line) and the uniform distribution (dashed
blue line). HCT116 data from SRR1105736, SRR1105737, SRR1105738, SRR1105739.
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Supplemental Figure 13: A cartoon diagram depicting the AME method. Analysis of Motif
Enrichment (AME) is part of the MEME suite and requires (a) a ranked list of ROIs as input. AME
then performs (b) linear regression on the motifs as a function of rank.
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Supplemental Figure 14: Diagram depicting the benchmark strategy utilized in Figure 4.
(a) A description of key concepts of motif embedding strategy for both signal (grey) and background
(orange). (b) F1-Score (as heatmap) for benchmark varying fraction of ROI with signal (x-axis) and
background (y-axis). Representative tests cases are labeled (i-iv) and their (c) respective embedding
strategies are shown. (d) A description of additional criteria utilized for altering variability of signal
embedding. (e) For 10% signal, we additionally alter the signal standard deviation (x-axis) vs
background (y-axis). Representative cases (vii-ix) are labeled and their (f) respective embedding
strategies are shown.
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a b

Supplemental Figure 15: TFEA is fast and memory efficient. (a) Runtime statistics for AME
(solid blue; parallel processing not supported) and TFEA (8 processors: solid red; 1 processor:
dashed red) with varying numbers of input ROI (bars = standard deviation of 10 runs). (b) Memory
usage statistics comparing AME to TFEA.
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Supplemental Figure 16: Clustering LPS induced TFs based on dynamics over time. We
applied k-means clustering to the subset of TFs that were significant (by TFEA) in at least 15
time points (~2/3 of all timepoints; n=32 TFs). (a) Time series traces of significant TFs colored
by resulting cluster. The three main clusters correspond to the immediate increased responders
(cluster 1, green), the immediate decreased responders (cluster 2, orange) and the later responding
TFs (cluster 3, purple). (b) Alternatively the TFs can be analyzed using the String database using
the Markov cluster algorithm. (c) Superposition of the coloring scheme in (a) onto the network
cluster of (b).
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Supplemental Figure 17: TFEA recovers the glucocorticoid receptor (GR) following
treatment with Dexamethasone. TFEA is able to recover GCR in many distinct data sets
including ATAC, H3K4me1, and H3K4me2. Interestingly, TFEA only detects moderate enrichment
of GR in H3K4me3, in agreement which previous results indicating that GR primarily binds to
enhancers (which do not have the H3K4me3 mark).
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