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Microbial analysis of environmental samples uses high-throughput genomic
sequencing to determine the diversity and quantity of microbial species. Current
sequencing techniques can produce very large data sets that are not handled by current
analysis applications, necessitating the design of better approaches. This work presents
three new applications: SeqCluster, Parsinsert, and PTreeView. SeqCluster groups
sequences based on similarity using a hierarchical clustering method and selects a
representative sequence to create operational taxonomic units (OTUs). SeqCluster also
supports large distance matrixes exceeding the size of available local memory by using a
custom memory management system. Parsinsert introduces an algorithm that can exploit
the knowledge provided by publicly available curated phylogenetic trees to efficiently
produce both a phylogenetic tree and taxonomies for unknown sequences. PTreeView is a
user-friendly visualization application with a broad range of functions and capabilities
supporting very large trees. The applications presented here handle hundreds of thousands
of sequences efficiently for data clustering, phylogenetic tree building, taxonomic

classification, and tree visualization.
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1. Introduction

There are bacterial communities all around us in the soil, oceans, waterways, and
even within the human body which are vital to everyday human life. These microbiomes
contain diverse groups of bacteria working in unison to maintain healthy environments.
When the environments are altered by pollution or disease, the community changes in both
dramatic and subtle ways. Determining the makeup of the community and identifying
significant changes between communities has only recently been possible. High-throughput
DNA sequencing technology has supplied much more information than can easily be

interpreted by a researcher without computational support.

Determining the number of different species and the relative quantities of each
species cannot be performed by counting each unique sequence because sequences from
individuals of the same species differ by as much as 3%. The sequence data must be
clustered to obtain groups of similar sequences, which represent unique species.
Researchers are also interested in knowing the taxonomic classification of each species to
help identify function within the community. They want to ascertain the evolutionary
distances between all the species in the community in order to understand both the range
of diversity and relative differences in microbiome diversity. Phylogenetic analysis produces
a tree representing the common ancestry and evolutionary distances between members of
the community. The number of species within a microbiome may exceed 10,000, making

visualization of the trees difficult without visualization applications.

This thesis explores innovative solutions for solving computational needs for
clustering data, taxonomic classification of sequences, phylogenetic analysis, and the

visualization of the large data sets produced for studying bacterial communities.
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SeqCluster groups sequences based on similarity using a hierarchical clustering
method and selects a representative sequence from each group to create operational
taxonomic units (OTUs). Using a custom memory management method, SeqCluster

supports large distance matrixes that exceed the size of available local memory.

Parsinsert introduces an algorithm that can exploit the knowledge provided by
publicly available curated phylogenetic trees to efficiently produce both a phylogenetic tree

and taxonomies for unknown sequences.

PTreeView is a user-friendly application to visualize and customize phylogenetic
trees. It has a broad range of functions and capabilities, such as formatting, zooming,
searching capabilities, clade support with topology manipulation, bootstrap support, custom

annotations, and support for large trees containing hundreds of thousands of taxa.

These innovative and efficient solutions handle the large data sets produced by
current high-throughput sequencing technology by addressing the computational needs for
clustering data, taxonomic classification of sequences, phylogenetic analysis, and tree

visualization.



2. Background

Complex microbial environments are being studied to discover the differences in
composition and abundance of microbes in healthy and unhealthy communities.
Understanding the full breadth and depth of this microbial diversity provides valuable
insight into the biology of global processes. To study these microbiomes, the diversity and
abundance of each microbe type must be determined within a sample. There are millions of
bacteria in each sample from many species, yet it has been estimated that microbiologists

have been able to culture in a laboratory less than 1% of all bacteria [1].

Determining the number of species and relative quantities of each species was, until
recently, a manual task that required counting the number of each bacteria type through
microscopic images or depositing each bacterium onto a growth media and allowing it to
culture. Many of the bacteria in a microbiome have such low quantities that they were
never selected, while others were selected but did not clone themselves in the growth
media. These factors kept past researchers from determining the “true” diversity of the

microbiome.

2.1. Sampling

Biologists investigating natural bacterial communities are confronted with the
problem of knowing how well the sampling represents the true diversity of the microbiome.
It has been estimated that there are billions of bacteria in a handful of soil [1]. A variety of
statistical methods have been used to determine how much of the community has been

sampled by looking at the number of species and the occurrence of those species [2, 3].



The advent of current sequencing techniques has made technology available to
easily analyze whole communities and the cost per sequence continues to fall. The
Polymerase Chain Reaction (PCR) method allows DNA from any organism to be amplified
and allows detection of DNA from a single organism in the sample. Current techniques of
Sanger, 454, and lllumina sequencing allow samples to be analyzed in a matter of hours and

can produce hundreds of thousands of unique sequences.

DNA is made up of four different nucleotides in a double stranded helix structure.
The nucleotides adenosine (A), guanine (G), cytosine (C), and thymine (T) form canonical
Watson-Crick base pairing across the helix (A-T, C-G). Heat causes the double stranded helix
to separate into single strands, and when free nucleotides and polymerase are available as
the sample is cooling, the polymerase will add complementary nucleotides to the single
strands, creating two identical double helix strands. PCR doubles the number of copies
during each thermal cycle, allowing the detection of even low abundance members after

only a few iterations.

Current sequencing methods capture single stranded DNA, replicate the strand by
PCR, and use special nucleotides that will fluoresce when incorporated into the
complementary sequence. Each of the nucleotide types is added one at a time, and if the
next nucleotide required to build the complementary sequence is being added, the sample
will fluoresce. The process is repeated along the whole length of the single strand and

records which nucleotide type fluoresces to obtain the “read” for that sequence.

Current sequencing techniques can produce “reads” of the sequences

simultaneously for up to one million different fragments of DNA per processing run. How



well this procedure has captured the overall variety of the sample can only be estimated by
determining the quantity and distribution of distinct types of organisms found in the
sample. Determining the sequence taxonomy and quantities of each species allows the
estimation of the number of unseen species and determines the coverage of the sample [2].
Distributions of different samples can be compared to distinguish significant changes

between samples.

2.2. Phylogenetic Analysis

Phylogenetics is the study of evolutionary relationships between groups of
organisms. The DNA for a species is a dynamic system, changing to keep the species viable in
changing environments. As different groups of organisms change, they can diverge and
create new species. Phylogenetic analysis attempts to discover the underlying relationship
between species by finding the most likely common ancestors of a set of sequences. These
relationships are often shown graphically in phylogenetic trees, such as the Tree of Life. The
Tree of Life, Figure 1, shows the overall relationship of all branches of life on this planet.
Phylogenetic analysis is used to determine the relationship between all sequences within a
sample, allowing biologists to view the overall composition and diversity of organisms in the

environment under study.
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Figure 1 - Tree of Life showing evolutionary divergence of species. Branch points represent common ancestors
of the descendants. Length of the branches represents evolutionary time. [1]

PCR can be used to selectively amplify the sequences from a single gene through
careful selection of short synthetic DNA fragments called primers. BY selecting primers that
can only match DNA from a known gene, only the DNA from that gene is replicated for

sequencing.

Phylogenetic analysis of a community requires that the gene selected for
sequencing must exist in all living organisms, be conserved enough to show relationships
between evolutionary distant relatives, and variable enough to differentiate more recent
evolution. The most common gene sequenced is the Small Ribosomal Subunit, SSU rRNA,
since it is required for protein production in all microbial organisms. The SSU rRNA gene is a

short sequence of approximately 1500 nucleotides and has both variable and highly



conserved regions. Phylogenetic analysis can be used to distinguish sequences down to the
species level. Since the ends of the sequence are conserved regions, PCR can be performed
using universal primers that do not require knowledge about the community before

processing.

As valuable as SSU rRNA has been for phylogenetic analysis, it does have its
limitations. Because it is vital to every organism’s survival, there are many copies of the
gene sequence in every genome. The number of copies varies and can cause over/under
representation in sequencing data. Despite the limitations, using SSU rRNA for analysis is a

powerful method and has discovered many organisms that were previously unseen.

2.3. Operational Taxonomic Units

Many applications require the species counts and abundance counts to determine if
significant differences exist between samples. The data is clustered to create Operational
Taxonomic Units (OTU) because the amount of data being collected by current sequencing
methods can often overwhelm the analysis algorithms. The counts of sequences in each
OTU, along with a single representative sequence from each OTU, are used for further
analysis. Clustering algorithms are used to combine the similar sequences until the diversity
reaches a threshold at which members of a common species diverge. The threshold is

commonly set at 97% sequence similarity for the SSU rRNA sequence[4].

2.4. Taxonomy

Taxonomy is the classification, identification, and naming of organisms.
Classification was first performed by looking at the morphological features of species and
grouping them by commonality of those features. For example, wings vs. four legs, fur vs.

scales, or two legs vs. four legs. With current sequencing methods, the visible genotypes
7



are not required since the sequences of related species provides better evidence than the

physical traits[1].

Taxonomy is used in biology to combine similar individual sequences into groups.
The taxonomic classifications are a hierarchical set of categories referred to as ranks. In the
ordered set of ranks (Kingdom, Phylum, Class, Order, Family, Genus, and Species), Kingdom
is the most general category and Species is the most specific category. Within any species,
individuals will have slightly different sequences for a given gene. The amount of difference

allowed is dependent on the gene being sequenced, but is often set at 3% for SSU rRNA[4].

Assigning taxonomic classification can be obtained from BLAST, a database
searching algorithm provided by the National Center for Biotechnology Information (NCBI).
The database contains all the known taxa (species or subspecies) sequences. Each taxon has
a database record annotating the known information. BLAST finds the most homologous
sequence matches in the database and assigns the taxonomy based on the best matching
sequence. Sometimes the most significant match returned by BLAST is not the best
taxonomical match and can lead to erroneous taxonomy assignments. Machine learning
methods, such as Hidden Markov Models (HMM) and Support Vector Machines (SVM), are
fast and excellent classifiers for the sets of taxonomies on which they are trained. However,
they have difficulty with sequences that exhibit similar sequence patterns with species from
different branches of the taxonomy. | have implemented a method for taxonomic
classification that infers the taxonomy for an unknown sequence by inserting it into a

phylogenetic tree created from sequences with known taxonomy.



2.5. Phylogenetic Trees

Although many biologists desire phylogenetic trees for further analysis, the tree
building methods have exponential runtime complexity. Building trees can take hours for a
few hundred taxa, which makes processing 100,000 sequences impractical. There are many
databases that are dedicated to SSU rRNA and some provide curated phylogenetic trees.
Curation adds knowledge to the tree that cannot be captured by the sequences alone.
Greengenes [5] provides a “core” tree of approximately 10,000 taxa that are considered a
good representation of the diversity of known taxa. This work introduces an algorithm that
can exploit the knowledge provided by these curated trees and produces both a

phylogenetic tree and taxonomies for unknown sequences.

Parsimony is a phylogenetic analysis based on the assumption that the minimal
amount of change between sequences represents the path of the last common ancestor or
last divergence point[6]. Parsimony techniques may be more sufficient at classifying
unknown sequences [7] than other methods, such as HMM[8], SVM[9], or Bayesian[10]
techniques. One of the goals of this work was to design a program to parsimoniously insert
a large number (>100,000) of environmental sequences into a core phylogenetic tree. While
parsimony may provide one of the best methods of phylogenetic analysis, few programs can
handle multiple thousands of sequences. Current sequencing technology will only increase
the number of sequences produced by each sequencing run, requiring that better tools be

designed to handle this large amount of data.

Phylogenetic tree building algorithms are usually very time consuming when
handling large numbers of sequences. To make the algorithms more usable, the amount of

data needs to be reduced. There are many sequences that are nearly identical and the most

9



common method for data reduction is to create OTU's by clustering the sequences. There
are a number of different applications that can be used for clustering[5, 11, 12]. If the
taxonomy of the sequences is known, clusters can be selected by sorting sequences with the
same taxonomy into groups. Other methods, such as agglomerative hierarchical clustering,

can be used to group by sequence similarity.

2.6. Clustering
2.6.1. Clustering Methods

There are two major types of clustering methods: hierarchical and partitional.
Partitional clustering is a classification problem that assigns a set of observations into
clusters with other similar observations. The number of clusters is usually predetermined
and the method finds the best observations to place in the number of given clusters.
Hierarchical clustering is a stepwise method that makes a decision at each step for creating
a cluster. The final output from this method will be a tree showing the relationship of all the
observations. Hierarchical clustering can either be agglomerative or divisional. Divisional
places all observations into a single cluster and finds the best way to divide the set into two.
It then iterates on each cluster until each contains a single observation, making it a top-
down method. Agglomerative takes the alternate bottom-up approach where each
observation is placed in its own cluster. At each step the two most similar clusters are
merged into a single cluster. The order in which clusters are merged determines the tree
structure, where the root of the tree represents a single cluster encompassing all
observations. The agglomerative hierarchical method was used in the implementation of

algorithms for this thesis.
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2.6.2. Distance Matrix

Hierarchical clustering algorithms are powerful because any comparison function
can be used to determine similarity between any two observations. The similarity is usually
referred to as a distance between observations. The distances of all pairs of observations

are placed into a distance matrix, which is used to determine the next clustering step.

Once two clusters are selected as the next to be merged into a new cluster, the
distances from the new cluster to all other clusters must be determined. There are three
common methods: single-linkage, average-linkage and full-linkage. Each method creates
clusters with different properties. To find the distance from one cluster to another, single-
linkage finds the minimum distance from any member of one cluster to any member of the
other cluster. This allows the cluster to follow patterns within patterns, such as concentric
circles. This method is the fastest, but tends to drift through the data creating diffused
similarity within the cluster. Average-linkage tries to mediate between the two other
methods, using an average of the distances from one cluster to the other. Full-linkage
creates clusters that are the most tightly bound by using the maximum distance between
members of the clusters. It cannot see patterns of overlapping similarity and would fail at
finding concentric circles, instead taking a fraction of each circle as part of a cluster. Full-
linkage is most useful for phylogenetic analysis because of the tight similarity in the clusters

produced.

2.7. Visualization
Visualization of large datasets is difficult with limited available screen space. The
information is complex, and exploring the data without the use of graphical interfaces is

time consuming and overwhelming. Tree organization lends itself to graphical display. The

11



common information can be collapsed into a representation of clusters or clades. Hiding and
highlighting information is required to allow researchers to focus attention on specific

details of a particular tree.
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3. Related Work
3.1 Clustering

Most of the previous work in clustering large data sets has been in the data mining
research area [13] and recently applied to clustering of sequence data. Creation of
Operational Taxonomic Units (OTUs) has seen a revival of clustering methods to reduce the
number of sequences used for phylogenetic analysis[11, 14, 15]. Fast clustering algorithms
available today cannot support the large datasets that are produced by modern clustering
because they take O(N?) to O(2") in time and require O(N?) in space, which will exceed the
address limits of 32 bit machines. For smaller data sets there are a number of integrated

application suites that have implemented data reduction methods[16, 17].

The SSU rRNA gene has been used for sequencing to determine diversity of
environmental samples. There are multiple databases designed to identify and annotate SSU
rRNA gene sequences, such as NCBI, Greengenes, and SILVA, each with its own set of
curation tools. Greengenes, for example, provides sequence alignment for “browsing,
blasting, probing and downloading” [5]. The main goals for sequence analysis of unknown
organisms typically involves identification (taxonomy) and tree placement (phylogenetic
relatedness). There are a number of ways to classify and insert unknown sequences into a
“core” tree [7]. Greengenes uses a BLAST method that compares NAST aligned sequences
against a comprehensive and up-to-date database of bacterial and archaeal 16S rRNA genes
with taxonomy determined by multiple curators[18]. SILVA uses a cross-checked dynamic
alignment process that gives each sequence an alignment score that is used to identify

taxonomy [19]. The Naive Bayesian classifier developed for the Ribosomal Database Project
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(RDP) uses a word-based (8 base pair) algorithm using oligonucleotide frequencies to classify
sequences according to Bergy’s Manual [20]. ARB directly inserts sequences into a core

phylogenetic tree through parsimonious insertion [21].

Parsimony is a phylogenetic analysis based on the assumption that the minimal
amount of change between sequences represents the path of the last common ancestor or
last divergence point[6]. Parsimony algorithms have been shown to work well on large data
sets as they provide better phylogenetic distance results in more accurate diversity
measurements and parsimony techniques may be more sufficient at classifying unknown
sequences [7]. However, the use of parsimony is currently only used by ARB which provides
methods for annotating trees and a tree-viewing program [21]. The insertion of unknown
sequences is time consuming, 250 per hour on a 2010 computer. ARB software uses a
database of ~30,000 sequences and inserts new sequences into the core tree using ARB-
parsimony insertion and branch lengths are superimposed onto a parsimony-generated

tree.

3.2. Tree Building

There are many tree building applications available which use a variety of
algorithms, from simple distance methods to parsimony, Bayesian[3], and maximum
likelihood methods. Parsimony algorithms were introduced in the 1970’s by Fitch [22]. One
of the early contributors of applications, Felsenstein, maintains a web page, listing not only
the large library of phylogenetic applications he has contributed to, but also links to all of
the available applications [http://evolution.genetics.washington.edu/phylip.html]. The
parsimony concepts for increasing the speed of parsimony methods are described in [23]

and for handling larger data sets in [24, 25].
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Algorithms, such as maximum likelihood, that search all possible tree configurations
produce the most accurate results, but are O(2") in time which limits the number of
sequences that can be processed in a reasonable amount of time. Branch and bound
methods seek to limit the number of possibilities, but still require massive computational

resources.

3.3. Visualization

There are many alternative tree viewing applications available. Table 1, adapted
from [26], shows commonly used visualization applications. Only Dendroscope, PHYLIP’s
drawtree, and TreelJuxtaposer can handle large trees. Many are limited to the
manipulations that can be performed. This is an active field of research because there is a

need for creating trees that can be used in published articles and for dynamically exploring

phylogeny.

Table 1: Features of visualization applications.

Taxa | Search | Compare Color Edit Collapse Rerooting
Subtree

PTreeView (this work) Limited by 4 4 4 v v v

memory
Dendroscope[27] 350k v v v 4 4
HyperTree[28] 20k v v
MEGA[29] 20k v 4 v
PHYLIP[30] 1336k
TreeDyn[31] 5k v v v 4 4
TreeJuxtaposer[32] 1002k v 4 v 4
TreeView[33] 2k v v v v
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4, SeqCluster - Operational Taxonomic Unit Clustering

SeqCluster application was created for use in the Pace Lab at the University of
Colorado, Boulder, to help with the analysis of microbial data. It was designed to handle
large data sets up to 100,000 sequences, perform efficiently, and produce outputs at
multiple points during the clustering process to provide different sets of OTUs to be used for
further processing. These were accomplished by using a hierarchical clustering method

based on similarity of the sequences.

SeqCluster performs hierarchical clustering using single, full, or average linking. The
implementation was optimized to handle large data sets, utilizing multiple processors and

multiple threads per processor to minimize idle times due to waiting on disk reads/writes.

Modern sequencing can produce hundreds of thousands to millions of reads in a
single day. Data analysis requires that this large amount of information be reduced to a
more manageable amount by the creation of Operational Taxonomic Units (OTUs).
SeqCluster creates OTUs by clustering the similar sequences into a group and selecting a
representative from the group to be used for further processing. Clustering is accomplished
by means of an agglomerative hierarchical algorithm using a distance matrix comprised of

sequence similarity. Clustering is continued until only one group remains.

Sequence similarity is calculated by finding the percent of matching nucleotides
between two sequences while ignoring insertions and deletions. Because the sequences are
from a very slowly changing gene, near relatives will have a similar alignment and matching

set of nucleotides and more distant relatives will have fewer matching nucleotides. The
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sequence comparison is usually the time limiting step when clustering a large set of
sequences, even though the algorithm is O(cN?) in time and space. Once the matrix no
longer fits in local memory and data must be swapped out to disk, the time constant be
comes large, 10° and contributes considerably to total execution time. Given a simple 4-
byte value to store a distance, 32,000 sequences will require 4 GB to store the distance
matrix, which is the full address space of 32 bit computers. To keep a full distance matrix for
100,000 sequences will require over 37 GB. The Greengenes database contains over
300,000 sequences for SSU rRNA and would require 330 GB to store a distance matrix. The
first implementation of SeqCluster was developed for Microsoft Windows platform using a
32-bit compiler, which normally limits the data address space to 2GB, but can be extended
to 3GB using special initialization code. Consequently, SeqCluster implemented memory

management to support data sets which exceeded memory capacity.

4.1.  Algorithm

The user can select between single-linkage, full-linkage, and average-linkage
methods. The different algorithms provide different cluster characteristics that lead to
different members within groups. Single-linkage is the fastest, but tends to wander through
the data. Average-linkage produces clusters that are not as tightly contained and is similar
in speed to the full-linkage method. Full-linkage is the slowest method, but provides the

tightest clusters and is the preferred method for OTU creation.

Simple distance calculations that assume a constant rate of evolution, are known to
have long branch attraction, where longer sequences have greater similarity scores because
each single nucleotide mismatch is a smaller proportion of the total sequence length. This

problem is magnified over larger evolutionary distances when many insertions or deletions
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have accumulated. The SSU rRNA sequence is well conserved and is not as affected by this

limitation.

The clustering algorithm pseudo code is given in Figure 2. The preprocessing step is
performed to create the distance matrix and is saved to disk. The complexity of the
preprocessing step is O(N?) in time and space. The clustering step reads a matrix from disk
and creates a copy so the clustering step does not overwrite the original distance data,
which is required to calculate the centroids of each group for representative sequence
output. This also allows clustering with different methods to be performed without
recreating the distance matrix. The clustering step has N-1 steps to completely cluster all
sequences. Determining the next row to cluster would take N? in a naive approach, but
SeqCluster keeps row header information including the minimum value within the row,
therefore only a single pass through the N rows is needed to find the next two groups to
cluster. Each clustering step requires updating 2N (one row and one column) distances and

updates the minimum value for the row. Overall the time is O(N?).
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// Algorithm Pseudo Code
1. Create Distance Matrix
Read sequences from FASTA input file
For each sequence
Add new row to matrix
Write compressed sequence to random access file, link to row structure
For each row
Allocate data for row in a random access file, link to row structure
If multithreaded
Create number of threads requested
Wait while threads not complete
Else
For each row
For each column > current row
Calculate the distance between segeunces
Write row data to file
Reflect the upper matrix to create fully populated matrix

2. Clustering
Copy original distance matrix for cluster processing
Place all rows into their own group
For each group, find the minimum distance to another group
While more than 1 group remains
Find the minimum distance between any two groups
If next grouping exceeds output step
Create tree file
// Each group is an OTU. Select one representative from each OTU
For each current group
Determine a representative by finding member closest to the groups centroid
Write representative sequence to FASTA output file

Collapse the two rows together
Distances are updated using user selected method (min, max, avg)

Remove one of the groups from the list

Update each groups minimum distance
Add record to the tree stack

Write final output file set

Figure 2 - Clustering algorithm pseudo code. Creating the distance matrix can be distributed to multiple
threads/CPUs. The clustering step repeatedly finds the next two closest clusters and merges them together.
The clustering loop completes when there is only one group left. Output of intermediate steps produces sets
of OTUs with differing similarity among the members.
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4.2. Implementation
4.2.1. Inputand Output
SeqCluster reads a set of aligned nucleotide sequences from a FASTA formatted file.

Each sequence becomes a row and column in the distance matrix.

SeqCluster creates a set of files at each output point. The OTU list contains a
inventory of sequences that are members of each OTU and indicates which sequence is the
representative for the cluster. A tree file is created, in Newick format, showing the
hierarchy of clustering that has occurred up to that point. A FASTA file is created with all the

representative sequences for use in further analysis.

The implementation defaults to creating a set of output files at each percent
similarity, at 99%, 98%, 97%, etc. The user chooses the output set that meets their specific
needs of either similarity (97% similarity of SSU rRNA is considered the divergence limit of
sequences from the same species) or the output set that contains the number of clusters

that can be easily processed by other data analysis applications.

4.2.2. Memory Management

Memory management is performed through a simple set of functions for moving
data between memory and disk. The application manages the use of the data rows to limit
the number of rows in memory at any one time. The application locks and releases the row
data as needed. The memory management recovers the buffers from the row data and
holds it in a free list. If the same row data is requested, the buffer is removed from the free

list.
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Data writes are the responsibility of the main application and not the memory
management subsystem. The memory management is responsible for abstracting the data

location within the disk file and supports partial reads and writes of a single row.

4.2.3. Distance Matrix

Calculation of each position in the distance matrix creation is independent, allowing
the processing to be distributed. SeqCluster implemented a method to distribute the
processing across multiple threads and CPUs. The hardware available at the time of the
implementation had two quad core processors, each with hyper-threading. The
implementation used multiple threads per CPU to keep the CPU busy while the other thread
was blocked, waiting for disk access. A shared memory segment was used to synchronize
memory access to information and the disk 10 processor was used to handle overlapping

sector writes on the shared matrix file.

4.2.3.1. Sequence Compare

Sequences are represented by an ASCII string using the letters “ACGT” to represent
the nucleotides and “-“ to represent gaps in the alignment. Each ASCII character is an 8-bit
representation for 3 bits of information. Because memory is a premium, sequences are
compressed to minimize local memory storage of the sequence. Using only 3 bits to
represent the 5 states, compression can pack multiple nucleotides into a 16-bit word. The
compression of the sequences also allows speed enhancements to the comparison function
by allowing the processing of multiple sequence positions at the same time. The packed 3-
bit values are used as an address into a pre-calculated scoring matrix, shown in Figure 3,
requiring only a simple lookup and no calculations per compare. This can be extended to

create a larger scoring matrix using 12-bit packed values representing 4 nucleotides.
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Although this is only a 4X speed increase, it also has the advantage of keeping the CPU
within its instruction cache during execution, which further increases the efficiency of the

implementation.

A _C G T - AAAA [4;4 |3;4 [3;4 [3;4 |3;3
Al1;1]0;110;1/0;1/0;0 AAAC [3;4 [4;4 [3;4 [3;4 [3;3
¢lo;1/1;110;110;1]0,0 AAAG [3;4 [3;4 [4;4 [3;4 [3;3
G|0;1/0;1]1;1]0;1]0,0 AAAT [3;4 [3;4 [3;4 [4;4 [3;3
T10;110;110;111;1]0,0 AAA-[3;3 [3;3 [3;3 [3;3 [3;3
-10;01(0;0]0;01|0;01]0;0

Figure 3 - Scoring matrix for single and multiple positions. The table on the left shows a lookup table when
comparing two single characters. The two values in the table are the number of correct matches and the number
of comparisons performed. The compare function ignores inserts and deletions, so only positions that both have
a nucleotide are compared. Comparing A to a gap ‘-‘ does not contribute to either the matches or number of
compares. The partial table on the right compares 4 sequence positions at a time. Using the bit packed
sequence values to find the position in the lookup table and the comparison function immediately obtains both
the number of matches and number of comparisons from the table. Iterating through the sequence four
positions at a time, accumulating the values from the table allows a highly efficient calculation of the similarity
between two sequences.

To calculate a distance between two sequences, the number of positions that both
contain a nucleotide and the number of matching positions are used to calculate the
percentage of similarity. The tables in Figure 3 show the pre-calculated values for sequence
character comparison. The first value is the number of matches and the second value is the
number of positions where there are nucleotides (not gaps) in both strings. Comparing
sequences AAAC and AAAT would produce 3 matches in four comparisons, where a
comparison of T-GT and TA-T would match two positions in two comparisons. The table on
the right compares four positions at a time. The multiple position table using 12-bits per
compare requires a 16MB table. The inner loop for comparing two compressed sequences

was timed at a mere 9 ns per iteration.
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4.2.3.2. Matrix Reflection

The distance calculation from sequence A to B is the same as from B and A,
requiring that only half of the matrix be calculated and then reflecting the values onto the
other half. Because the comparison function is more time consuming than reading values
from disk, a reflecting function for the matrix was implemented. Because the whole matrix

may not fit in memory, the matrix is reflected in segments.

4.2.4. Clustering

The basic hierarchical clustering algorithm picks the two groups to cluster, and then
reduces the matrix by combining the two rows and updating the columns of the other rows
to reflect the distance to the new cluster. When the full matrix will not fit into available
memory, disk access to the stored data must be performed. Disk access, which is a million
times slower than memory access, greatly increases the time to process. By postponing the
update of the columns until needed, there are many updates that can take place together or
are completely unneeded as subsequent merges overwrite the data before it is used. This
adjustment can eliminate the disk access and increase the execution speed. SeqCluster has

implemented this feature and can be optionally enabled.

4.2.5. Benchmarks
SeqCluster was tested using a number of different sized data sets. The execution
time and size of the distance matrix are shown in Table 2. The tests were run on a 2.8 GHz

Pentium 4 Intel processor running Windows XP in 2 GB of RAM.
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Table 2: Time and Space required to process a number of sequences.

Number of sequences GB distance matrix Execution Time in Hours
5000 Nl .1 (5 min)

16000 1 .4 (24 min)

32000 4 1.3

96000 34 9.25

4.2.6. Portto Unix

Original development for SeqCluster was on Windows platform, however a port was
completed to both 32-bit and 64-bit Unix machines. Some features were eliminated during
the port. Memory management was removed because the 64-bit operating system has a
large enough address space and more efficient algorithms that are responsible for page
swapping. The 8 GB of memory available on the test system allows fast processing of over

40,000 sequences per run.
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5. Phylogenetic Tree Building and Taxonomic Classification

Microbial community analysis requires information about the relationship of
sequences to each other and taxonomic classification. ParsInsert introduces an algorithm
that can exploit the knowledge provided by publicly available curated phylogenetic trees to
efficiently produce both a phylogenetic tree and taxonomies for unknown sequences. Test
results show that the taxonomic classifications and insertions of sequences into the

phylogenetic tree are very accurate.

Once the sequence data of an environmental sample has been analyzed and
reduced to a set of species, phylogenetic analysis can be used to understand the evolution
and degree of relatedness among species within and between samples [34]. The analysis
uses the count of each species in the sample and the degree of relatedness (nearness in a
phylogenetic tree) to estimate the significance of differences between microbial
communities. The differences between communities containing only slight variations of
closely related species are not as significantly different as samples where the species are

from more distant relations.

Although phylogenetic trees are desired for further analysis, the tree building
methods have exponential runtime complexity. Building trees can take hours for a few
hundred taxa, which makes processing 100,000 sequences impractical. As current
sequencing methods continue to increase the number of sequences per run, the
computational time will become incapacitating. New computational methods are required

to support these technology changes.
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In microbial analysis, the most commonly used gene for phylogenetic analysis has
been SSU rRNA. There are conserved regions to be used for relating distant relatives and
variable regions that provide distinction among closer relationships. There are many
databases that are dedicated to SSU rRNA and some provide curated phylogenetic trees.
Curation adds knowledge to the tree that cannot be captured by the sequences alone.
Greengenes [5] provides a “core” tree of approximately 10,000 taxa that are considered a
good representation of the diversity of known taxa. This section introduces an algorithm
that can exploit the knowledge provided by these curated trees and produce both a

phylogenetic tree and taxonomies for unknown sequences in a fast and accurate method.

Curators have evaluated the relationships between the core sequences and have
accepted a particular tree as the correct tree. The topology of the tree should not be
changed by the sequences being processed, but instead, the sequences should be inserted
to pad out the tree. The Parsinsert application was created to take advantage of the
knowledge imparted by the curators through the use of parsimonious insertion into a
curated tree. Parsinsert only inserts the new sequences into the tree while maintaining the
original topology among core sequences. Finding the insertion points for any new sequence
is only dependant on the original core tree, thus allowing the insertion process to become
distributable. The ParsInsert algorithm also limits the number of comparisons to the size of
the core tree, therefore increasing the speed of tree creation. Parsinsert produces a
phylogenetic tree with both core and unknown sequences and infers taxonomy for each

unknown sequence by examining the insertion location.

Parsimony is a phylogenetic analysis method based on the assumption that the

minimal amount of change between sequences represents the path to the last common
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ancestor or last divergence point. Parsimony algorithms have been shown to work well on
large data sets, as they provide better phylogenetic distance results and more accurate
diversity measurements. Parsimony techniques may also be better at classifying unknown
sequences [7]. Building a full tree de novo using parsimony is dependant on the processing
order of the sequences. Parsimonious Insertion eliminates the stochastic nature and
provides a deterministic process for every insertion into the core tree, irrespective of other

sequences to be inserted.

Greengenes provides a full tree containing more than 240,000 sequences found in
their database. This includes the 10,270 sequences that form their core taxa. Python scripts
were created to automate the preprocessing of the tree by trimming all sequences that
were not in the core sequence list while maintaining the total branch lengths from

sequences to the root. This is the core tree used in all further references.

Greengenes also maintains annotations for each sequence in the database that
include taxonomy assignments from multiple curators: RDP, PACE, LUDWIG, HUGENHOLT?Z,
and NCBI. The assignments from one of the curators, Ribosomal Database Project (RDP),
were selected for use in testing the implementation. The RDP assignments were chosen

because they were the most widely available in all the sequences selected for the test sets.

27



5.1.  Algorithm - Parsimonious Insertion into Curated Tree

Read in the given a core taxa tree topology, sequences for the core taxa, and taxonomy file.

For each branch node in the tree
Calculate the parsimony sequence based on the children of the node
Calculate the taxonomy as intersection of taxonomy from all children

for each group of new sequences that fit into memory
for each node in tree
for each sequence in memory group
calculate score between node and sequence
Add score,node pair to best matches for sequence
Keep top K scores
for each sequence in memory group
write top scoring positions and taxonomy

Add the sequences into the tree at the positions that matched best

If best match is a taxa, use the parent of taxa as insertion position

If only one new sequence is to be added at the branch node
Add as child
Calculate distance from branch node to sequence

Else
Create new branch node as child
Add group of sequences as child to new branch
Calculate distance from branch node to each sequence
Use half of smallest value as distance from best position and new branch
Subtract half of smallest value from all children of new branch

Write new tree with taxonomy annotation
Write new tree with names only
Figure 4 - Algorithm for Parsimonious Insertion into a tree without modification to the tree’s topology.

5.1.1. Creating a Sequence for the Common Ancestor

Each common ancestor in the core tree generates its parsimonious sequence from
the sum of its descendants. The sequence is stored as a series of 4-bit patterns, where each
bit represents the occurrence of A, C, G, or T at that position in one of the descendants.
Brackets are used to delineate the set of nucleotides that can occur at any position. For
example, the sequence AGGT can be written as [A][G][G][T]. This format can represent
more than one nucleotide at a position. The sequence [A][AG][G][T] shows two nucleotides
are possible at the second position. Figure 5 shows the accumulation of possible

nucleotides at each position from all the descendants. The sequences ACTT and ATTT only
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differ in the second position, so their common ancestor’s composite sequence can be simply

written as A[CT]TT.

ACTT --|
|--- A[CT]TT ---|
ATTT --| \
| -———- A[CT] [CGT] T
ACGT --| \
|-—= AC[CG]T ---|
ACCT --|

Figure 5 - Example of parsimonious sequences for common ancestors. The composite sequence is an
accumulation of all possible nucleotides seen at that position in any of a common ancestor’s descendants.

Continuing the process, the next common ancestor sequence results from the
combination of A[CT]TT and AC[CG]T to produce A[CT][CGTIT as the composite of all four
original sequences. These composite sequences are used to compare internal nodes of the
tree and unknown sequences to locate possible insertion points. The best location for

insertion into the tree may be at the taxon level or at a common ancestor.

5.1.2. Creating Taxonomic Classification for Common Ancestor

The taxonomy of a common ancestor is inferred from analysis of the taxonomy of all
descendants. If there are many different taxonomic values at a given rank, the taxonomy of
the common ancestor must not assign that rank or more specific ranks because the diversity
implies this common ancestor encompasses multiple groups. Parsinsert uses a simple
majority of 50% or better to assign a rank value, which will bias the taxonomy of the tree

towards the species that are more highly represented.
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5.1.3. Comparison Scoring Function

Parsinsert compares the unknown sequence being inserted to all of the taxa
sequences and all the composite sequences at a common ancestor. Comparison of a
sequence to a composite sequence must take into account the different possible
nucleotides at each composite position, allowing a composite match if the composite
contains the nucleotide from the sequence being inserted. The scoring function used in
Parsinsert is a cost function that is calculated by adding up the number of differences,
insertions, deletions, and one-quarter of the composite positions that matched. The
composite positions matched are partially weighted to allow sequences with more exact
matches to have a lower cost than one that has more matches to composite positions. The
scoring function is a cost function where the best scores are the smaller scores. An exact

match of sequence would have no cost in this scoring scheme.

5.2. Results
5.2.1. Test Set Generation

Python scripts were written to generate sixteen data sets by randomly selecting taxa
from the 230,000+ taxa sequences not already in the “core” tree of the Greengenes
database. Generation of the test sets did not consider the availability of an assigned
taxonomy from any selected curator, therefore the test sets can be used to test the
algorithm independently of the selected curator. During Parsinsert testing, sequences that
did not have taxonomy specified by the selected curator were excluded from accuracy
measurements. Testing was performed with sixteen sets, ten sets each with 100 taxa, five

sets each with 1000 taxa, and one set with 10,000 taxa.
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The test results may show some bias because of the random selection of taxa from a
skewed data set. The contents of the Greengenes database is skewed towards bacteria and
contains less than 2% archeae and eukaryote sequences. The core tree also has more
bacteria and may inflate the accuracy rates when testing against a mostly bacteria test taxa,
as compared to the greater diversity of environmental samples. A taxon may be included in

more than one test set and may be included in the overall results multiple times.

Current sequencing methods differ by the length of the read and cost per read. The
Sanger method produces longer reads, up to 1500 nucleotides, but at a much higher cost.
The 454 sequencing method allows for less expensive reads, but sacrifices length, producing
reads of 300-400 nucleotides. The Illumina solution is the least expensive and has the
shortest reads of up to 75 nucleotides. The SSU rRNA sequence is approximately 1500
nucleotides, making Sanger the best choice, but SSU rRNA has both highly conserved and
more variable regions [35]. These regions are spaced out along the sequence. The region
spanning from variable region V1 to V2 is approximately 300 nucleotides long. If the
primers for PCR are selected to start replication from the variable regions, the reads can
span the variable and intervening conserved regions. It has been shown that the short

sequences spanning the variable regions are sufficient to determine the species [36].

One additional test set of 1000 sequences was created to simulate short reads. The
nucleotides on each end of the randomly selected sequences are changed to gaps to reduce
the sequence to range from V1 to V2, about 260 nucleotides. The short sequences are still
aligned, can be compared against the full length sequences, and require no changes to the

Parsinsert algorithm or comparison function.
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5.2.2. Tree Insertion Accuracy

There are two results that must be tested for each inserted sequence. The first is
whether insertion occurs at the correct location within the tree and the second is if the
assigned taxonomy is accurate. Testing was accomplished in both cases by evaluating the
taxonomy assigned to inserted sequences as compared to the curated taxonomy. In Table 3
two different types of matching are recorded: EXACT means the two taxonomies contain the
same number of assigned ranks and all assignments match, and SUBSET implies that one
taxonomy has fewer ranks assigned than the other (a subset), but all common ranks match.
Table 3 displays the number of sequences in a test set, the number of exact taxonomy
matches, the number of susbset matches, and the number of sequences that had at least
one rank with a difference. The test used two full length sets (1000 and 5000) and one

simulated short sequence set (1000).

Table 3: Test results of insertion points in the core tree by comparison of taxonomy.

Number of sequences | Exact Subset Differences
with known taxonomy | match

Full length sequence 997 624 (62%) 365 (37%) 8 (1%)
(~1500 nucleotides)

Full length sequence 4947 | 2606 (53%) 2279 (46%) 42 (1%)
(~1500 nucleotides)

Short sequences 949 651 (68%) 249 (26%) 49 (5%)
(~240 nucleotides)

Table 4 shows a breakdown of the accuracy as a function of the sequence similarity
for the larger full length test set. The table shows that higher similarity to a known taxon or
common ancestor leads to higher accuracy of the assigned taxonomy.
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Table 4: Test results of insertion points in core tree by comparison of taxonomy, based on similarity of
sequence to insertion point. No insertion points were assigned with less than 80% similarity.

5000 Full length sequences

Sequence Total Exact Subset

similarity
>97% 3475 75% 3438 99% 12 0%
>95% 524 11% 491 94% 10 2%
>90% 525 1% 428 83% 29 6%
> 85% 99 2% 54 55% 22 22%
> 80% 8 0% 4 63% 2 25%

5.2.3. Taxonomy Accuracy

The method used to determine taxonomy accuracy compared the taxonomies at
each rank. Taxonomies were only compared on the common levels of assigned taxonomy.
There was no penalty for assignments fewer or more ranks than the reference assignment
as there is no way to judge the additional information. The accuracy reported in Table 5
shows the number of assignments at each rank that are correct, divided by the number of

assignments of that rank.

The algorithm performed extremely well, assigning 88% of the sequences to at least
the Family rank, with full taxonomy accuracy of 99.4%. Assignment down to Genus rank
occurred in 59% of the sequences, but only 12% of the sequences could be assigned a
Species rank. Many of the sequences do not have taxonomies specified to the species rank,
limiting the number of assignments that can be verified at that level. The accuracy for
assignments at all ranks remained high, at better than 98%, showing that users can have

high confidence in the assigned taxonomies.
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Table 5: Overall taxonomy results.

Rank Number of| % Assigned Correct % Correct
Assignments Assignments
Kingdom 15546 100% 15546 100.0%
Phylum 15409 99% 15374 99.8%
Class 15305 98% 15247 99.6%
Order 14259 92% 14207 99.6%
Family 13601 88% 13525 99.4%
Genus 8939 58% 8773 98.1%
Species 1889 12% 1877 99.4%

Parsinsert assigns a confidence level of its assignment of a taxonomy based on the

sequence similarity to the composite sequence at the insertion point. The accuracy levels

are broken out in Table 6, showing that Parsinsert accurately predicts that the low accuracy

taxonomy assignments it has made, come from the sequences that have a low confidence

insertion points.

Table 6: Taxonomy assignment accuracy based on confidence level.

Rank High Confidence Medium Confidence Low Confidence
Assigned | Correct % Assigned | Correct % Assigned Correct %

Kingdom 12317| 12317 100.0% 2380 2380| 100.0% 849 849 100.0%
Phylum 12298 12292 100.0% 2378 2370 99.7% 733 712 97.1%
Class 12267| 12254 99.9% 2347 2330 99.3% 691 663 95.9%
Order 11725| 11709 99.9% 2049 2032 99.2% 485 466 96.1%
Family 11480 11454 99.8% 1794 1771 98.7% 327 300 91.7%
Genus 8104 7970 98.3% 754 734 97.3% 81 69 85.2%
Species 1793 1786 99.6% 81 78 96.3% 15 13 86.7%
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6. Phylogenetic Tree Visualization

The large number of sequences being processed by phylogenetic analysis has
compounded the visualization problem for trees. Information overload required creation of
phylogenetic tree images that can focus attention on the user’s research points. | have
designed and implemented PTreeView, a user-friendly application to visualize and customize
phylogenetic trees. It has a broad range of functions and capabilities, such as formatting,
zooming, searching, clade support with topology manipulation, bootstrap support, custom

annotations, and support for large trees containing hundreds of thousands of taxa.

When trees were small, containing less than a few hundred taxa, visualization could
be done using text graphics to create denagrams with taxa names and taxonomy
annotations. As the number of sequences being analyzed continued to grow, the trees did
not fit on a screen and applications to support efficient viewing of large trees became
necessary. PTreeView is one of the few applications that can support the viewing of trees
that contain the hundreds of thousands of sequences commonly available from current

sequencing technologies.

6.1. Large Data Set Support (100,000s of Taxa)

The first visualization applications were developed to support viewing a few taxa
and then a few hundred taxa. Today’s sequencing methods produce hundreds of thousands
to millions of reads per day. New methods of visualization and mechanisms for storing large
trees are needed. Navigation features become necessary to manage the large amount of
available data, such as searching for taxa of interest when less than one hundred taxa can

be displayed at a time on the screen. Too much information is available and must be easily
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grouped together, requiring a means of hiding detail until needed. Researchers must be
able to manipulate the display of the tree, adding additional annotation and visual cues,

such as color and text fonts, to show the results of their research.

6.2. Formatting (Color, Size, Font, ...)

There are many features implemented in PTreeView that are not in other similar
applications, such as node ordering, attribute display, import/export, searching functions,
access to related web resources, and formatting of each node of the tree for color, size, and

other attributes.

PTreeView supports reading tree files in common Newick or its own PTREEVIEW
formats (see PTREEVIEW Format below, 6.8). The PTREEVIEW format maintains all visual
states and extended attributes. Legends are automatically generated which show the scale
of evolutionary distances represented by the length of branches. There are default
preferences for colors, fonts, sizes, and alternate annotations to be displayed that can be set
for the entire tree. Each tree can define titles, comments to be displayed at top and

bottom, and other attributes of the tree as shown in Figure 6.
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Figure 6 - Tree properties are applied to all items in the tree. Individual nodes can override the global settings
with local settings for color, font, size, and display features.

Each individual branch or leaf can override the global settings. This allows an

individual leaf or branch to be highlighted by changing color, font, or sizing of the text.

6.3.  Topology Manipulation
Common navigational tools are available to zoom and pan the display through
dragging a selection rectangle or using the CTRL+ and CTRL- keystrokes. The application will

automatically jump and zoom to appropriate levels when searching.

6.3.1. Clades

The visualization of large trees requires methods of hiding parts of the information,
in this case branches of the tree, to allow analysis of the data. This is accomplished by
allowing the topology of the tree to be manipulated for display. Double clicking on a branch
will cause the branch to collapse into a single object called a clade. The visual display of a
clade is representational of the information within the cluster. Figure 7 shows a mixture of
clades and taxa. The clades are represented by a trapezoid where the top and bottom line

widths represent the maximum and minimum total branch lengths to taxa hidden within the
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clade. The height of the clade represents the number of taxa within the clade. Double
clicking on a clade to expand the clade will show the children in their previous state

(collapsed or expanded).
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Figure 7 - Clade size represents the number of taxa contained within a clade. Lengths of the top and bottom
represent the longest and shortest branch lengths contained in the clade.

6.3.2. Hiding Detail and Reordering

Changing the order in which the children of a branch are shown does not change the
topology, but may make the tree more readable. PTreeView can sort the children from
shortest to longest branch length, longest to shortest branch length, or by selecting a
specific child and moving it up or down among the siblings. When a researcher is creating a
representation of the tree for publication, they often need to hide portions of the tree to
draw attention to other interesting features. PTreeView can mark a branch as “hidden” and

it will not be displayed unless viewing of hidden items is selected for the entire tree.
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6.3.3. Collapsing Branches

Another topological manipulation feature is creating a multi-furcating tree instead
of a bifurcating tree. There are often sets of taxa where the information needed for
predicting common ancestry between them is lacking. For example, given taxa a, b, and c,
there are three ways these could have evolved, a-b common ancestor before a-b-c ancestor,
a-c ancestor before a-b-c, or c-b ancestor before a-b-c. If the data does not support one of
these more than the others, the tree can have three children of the a-b-c common ancestor.
The support level for a given common ancestor is given by a bootstrap value calculated from
the set of possible tree topologies (see Bootstrap Values section 6.4.3). When support for a
common ancestor falls below a given value, the topology can be collapsed to reflect this
information. PTreeView supports manual manipulation of the tree, moving all children into a
grandparent, or performing a complete tree analysis and automatically collapsing all

branches where the support level is below a given value.

6.3.4. Orientation

A unique feature available in PTreeView is the display of the tree in right-to-left and
left-to right orientations shown in Figure 8. This is valuable when comparing two trees since
it places taxa towards each other. Search functions allow highlighting of nodes

simultaneously in multiple trees.
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Figure 8 - Left-to-Right and Right-to-Left orientation features of PTreeView allow trees to be easily compared.

The trees created by phylogenetic analysis are sometimes not rooted at any point in
the tree. This means that the tree can be picked up at any branching point in the tree,
allowing the selected branch to become the root, and insuring all other branch lengths and
topology remain the same. PTreeView implements this feature by selecting a root node and

reshaping the tree while conserving all branch lengths between taxa.

6.4. Custom Annotation

There are many attributes that PTreeView has predefined for use in creating and
maintaining the display environment. There are also attributes that can be imported into
PTreeView from external sources. Annotations can be collected from external databases

and applied to the current tree.

6.4.1. Comments

Every node of the tree can have a comment. The comments are optionally
displayed by user control. The information contained is user defined, but usually gives detail
as to the source of the sample and/or information about the taxonomy. Comment values
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for clades are usually taxonomy and can be optionally displayed either in collapsed or

expanded states.

6.4.2. Distances

Distances are stored as application attributes for each node of the tree. The user
can manipulate these distances. The attributes can be edited directly or imported from
external sources. Many times the researcher has trees that are not fully annotated with

branch lengths. PTreeView can also read the distances from another tree or data file.

6.4.3. Bootstrap Values

Bootstrapping is a statistical method of estimating the probability of each subtree of
the tree. Because many of the tree building algorithms are dependent on taxa input order,
the distribution of the possible trees is determined by running the algorithm a number of
times with random input ordering. To create bootstrap values for a given tree, each
common ancestor is evaluated to determine how often that cluster is found in the
generated trees. The bootstrap value for any cluster is the percentage of generated trees
that have that cluster. Therefore, when a specific grouping of taxa is always clustered

together, the bootstrap value is 100% for that group’s common ancestor.

PTreeView can annotate a tree by importing bootstrap values. There are many
applications available which generate bootstrap values. They usually create a Newick
format tree file where the distances are actually the bootstrap values. PTreeView imports
the tree and then searches the current tree for matches to clusters from the import tree.

When a match is found, a bootstrap value is set for that common ancestor node.

41



PTreeView also has the capability to read a set of trees from which to calculate the

bootstrap support level explicitly. The current tree is searched for clusters from each of the

bootstrap trees. A counter at each common ancestor in the tree is incremented when an

exact descendant list is found in a bootstrap tree. Dividing the counter by the number of

trees processed gives the percentage of trees supporting that ancestor, which is the

bootstrap value.
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Figure 9 - Bootstrap values are displayed as numbers to the left of the branch point. PTreeView supports
functions to modify the topology by collapsing branches that are below a given bootstrap value. The
bootstrap values can be imported from other trees or the support levels can be calculated by evaluating a set

of bootstrap trees.
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6.4.4. User Defined Attributes

Users often have more information about the sample set which they are studying.
This information is different in almost all instances, such as sex, location, and time of day for
samples in human tests, or pH, nitrogen, and temperature for environmental samples. This
information can be stored as part of the comments, but it may clutter the display.
PTreeView allows the user to import and assign custom values to any node of the tree. The

Search feature has the ability to find nodes based on user defined attributes.

6.5. Searching
6.5.1. Find

Once the trees become too large to be represented on a single screen, navigation to
specific locations becomes more difficult. To aid the analysis of large trees, a sophisticated
search method has been implemented. The search can find information within a specific
field or a regular expression can be used to define more complex patterns (Figure 10). The
search results are displayed in a results tab and clicking on a result item will jump and zoom
the display to show that resulting node. All the results of the search are marked on the
display with a marker. This marker is also shown on any clade containing a result item as

shown in Figure 11.
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Figure 10 - Searching dialog handles simple string matching and regular expressions. Search can be limited to
only attribute values or a specific attribute. The search function can be performed simultaneously in all open

trees.
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Figure 11 - Search results shown as a list in the lower right and by red marker highlighting individual taxa or
clades in the tree display. Clicking on an item in the results automatically scrolls the display to bring the

selected item into view.

6.5.2. Groups

Many users will be interested in a subset of the tree’s taxa. Often they are

researching a specific branch or set of taxa. PTreeView has implemented a group function,
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which defines groups as a set of taxa that are stored system wide. They are read from an
initialization file at startup. Groups can be created from a search result or copied from a set
of taxa names. Each group can be assigned a color for marking the tree as seen in Figure 12.
Once defined, the groups can be individually set to display a marker. For taxa belonging to
multiple groups, all marks are visible. As with the search results, Figure 13 show that when

a clade contains a member of a group, it is marked with the group’s marker.
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Figure 12 - PTreeView can define groups of taxa to be highlighted in the specified color. Groups are persistant
over all trees.
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Figure 13 - Groups can be defined for sets of interesting taxa. The members of the groups are highlighted by
drawing a rectangle around individual taxa or with a colored marker when a clade contains a member of the
group. The Groups tab at the bottom right allows individual groups to be highlighted as needed.

6.6. Import / Export

Many applications are available which create and manipulate trees in the Newick
format. Many cannot handle the long strings which are associated with a tree node when all
attributes are stored as part of the Newick comment field. As a result, most applications
just use a single id for the name of the taxa. Viewers of the tree would frequently like to see
more information or annotation of the taxa, such as assigning the taxonomy as part of the
comment field. This information is can be created as an auxiliary file and imported into
PTreeView. PTreeView supports reading and writing comma separated value (CSV) files
containing attributes for nodes within the tree. PTreeView can reconcile common ancestors

of a set of taxa for assignment of attributes. It can also export a user defined set of

46



attributes from the whole or a subset of the tree. Features have been implemented for the

special cases of importing taxonomy, distances, or bootstrap values from other trees.
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Figure 14 — The Export function lists all possible attributes, including user-defined attributes. Only the
selected information is exported to the comma separated formatted file. The Import feature will read any
header information from the file selected for import and displays a similar selection list for columns to import.

6.7. Access to Web Resources

While PTreeView can assign any attributes to individual taxa in the tree, usually
there is far too much available data to be assigned within the tree. To allow users as much
freedom as possible, an access method from a given taxa to standard databases was
implemented. Most of the work performed and examples used in this thesis have been
drawn from SSU rRNA research and the Greengenes Database has been used extensively.
When examining the trees produced by SeqCluster or Parsinsert, access to information
stored in the database records for that particular organism is required for further analysis.
Right clicking on a taxon passes the current taxon name to a database of choice (Figure 15).

Depending on the database interface, the database entry is either immediately displayed or
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a search result page is displayed from which the data can be accessed (Figure 16). Filters
were implemented to access the following databases: Greengenes (by prokMSA id,
assession number), Silva, and NCBI (nucleotide, protein, genome, structure, taxonomy,

pubmed) databases.

Lookup Taxa in Genetic Database

Ry
Search for: [AF356644 ~|
v

Database: ISiIva: Search by accession

Silva: Search by accession

GreenGenes: Search by prokMSaA
| 0K I GreenGenes: Search by accession

Figure 15 - Select database and type of search key to directly access database information.
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Figure 16 - Automated access directly to Greengenes database for selected taxon.

6.8. PTreeView File Format
The Newick Tree format is a simplistic format that does not easily allow for

customization or extension. The format only defines fields for a name, a comment, and a
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branch length for each node. All annotations must be placed in the comment field. Though
other applications have used the comment field to store additional information, it quickly
becomes unreadable and difficult to parse. To allow the additional attributes used by the
visualizer, a new format was developed. XML is considered overly verbose and difficult to
read, but does offer a simple method for extending the variety of stored information. A
simple XML-like format that is easily parsed was created to support both the visualizer and

end user annotations.

The PTREEVIEW file format is similar to an XML format, but eliminates some of the
textual overhead by using a simple recursive definition (Figure 17). Each object has a type
and a list of associated objects. Figure 18 shows an example of a simple tree. The
PTREEVIEW tree format can support multiple tree definitions per file. Every ‘<’ defines the
start of an object and ‘>’ terminates the current object definition. All objects defined within
the brackets are assigned to the containing object. There are only three object types: TREE,
which defines the top most node, NODE, which defines a subnode to the current node, and

ATTR, which defines attributes of the current node.

# lines beginning with ‘#’ are treated as comment lines

tree := ‘<’ TREE object_list >’ where TYPE is defined as TREE, NODE, or ATTR.
object_list := object | object object_list

object := attr_object | node_object

attr_object := ‘<’ ‘ATTR’ name value >’

node object := ‘<’ ‘'NODE’ object_list >’

Figure 17 - PTreeView Format Specification can describe the tree using only three object types: TREE, NODE,
and ATTR (attribute). A simple recursive parser easily parses the format. The format can support any number
of named attributes, which can be passed on without interpretation by applications not using a particular
attribute, which also mediates problems with down-level application versions.

The file format allows any information to be stored into the nodes. The visualizer

uses this format to maintain current visual attributes such as color, font, and size
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information. Itis also used to store user defined attributes and values. These attributes are

conserved between sessions of the application.

<TREE
<ATTR “Bottom Comment” “This is a comment displayed at bottom of tree”>
<NODE
<ATTR “Name” “root”>
<NODE
<ATTR “Name” “20394">
<ATTR “Distance” “0.00456">
>
<NODE

<ATTR “Name” “8345783">
<ATTR “Distance” “0.0126">

>

Figure 18 - Simple example of PTreeView format for storing attributes and topology of the tree.

Figure 18 shows the definition of a tree with only a root node and two child nodes.
The names of the nodes and the distance from the parent are the only defined attributes.
The format is simple to read, easily editable, and highly extendable. Attributes that are not
recognized or used by an application are ignored and transferred to the output tree without
the need to understand the formatting. Figure 19 shows an example of a tree with many
attributes and nodes, including color, font, display options for the whole tree, and bootstrap

values for common ancestor nodes.
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<TREE

<ATTR "Legend Color#" "0x00000000"> <ATTR "Taxonomy Label Font!" ""> <ATTR "Bootstrap Show~" "1"> <ATTR "Text Font!" "">
<ATTR "Legend Font!" ""> <ATTR "Display Scale" "0.060287"> <ATTR "Taxa Line Show~" "0"> <ATTR "Caption Show~" "1"> <ATTR
"Comment Font!" ""> <ATTR "Branch Name Font!" ""> <ATTR "End Comments Show™~" "1"> <ATTR "Clade Size Show~" "1"> <ATTR
"Legend Text" "Legend"> <ATTR "Clade Font!" ""> <ATTR "Caption Color#" "0x00000000"> <ATTR "Taxa Line Color#" "0x00000000">
<ATTR "Taxonomy Label Color#" "0x00000000"> <ATTR "Bootstrap Font!" ""> <ATTR "Clade Scale" "1"> <ATTR "Caption Font!" "">
<ATTR "Legend Show™" "1"> <ATTR "Taxa Line Font!" ""> <ATTR "Legend Value" "0.100000"> <ATTR "Comment Color#"
"0x00000000"> <ATTR "Bootstrap Color#" "0xO0FFO000"> <ATTR "Text Color#" "0x00000000"> <ATTR "Comments Show~" "1">
<ATTR "Caption" "C:\\GN\\042507\\ptree\\sample.tree

Created: Wed Apr 25 14:22:43 2007"> <ATTR "Caption Indent" "0"> <ATTR "Bootstrap Format" "%3.0f"> <ATTR "Rooted" "9741">

<NODE <ATTR "Distance" "249.0"> <ATTR "Bootstrap Data" "249.000000">
<NODE <ATTR "Distance" "300.0"> <ATTR "Bootstrap Data" "300.000000">
<NODE <ATTR "Distance" "300.0"> <ATTR "Bootstrap Data" "300.000000">
<NODE <ATTR "Distance" "300.0"> <ATTR "Bootstrap Data" "300.000000">

<NODE <ATTR "Comment" " 1440, EF069377.1, Archaea; Crenarchaeota; Thermoprotei; marine archaeal group 1;”>
<ATTR "Distance" "300.0"> <ATTR "NAME" "195536">

>

<NODE <ATTR "Comment" " 1440, EF069368.1, Archaea; Crenarchaeota; Thermoprotei; marine archaeal group 1; “>
<ATTR "Distance" "300.0"> <ATTR "NAME" "178096">

>
<NODE <ATTR "Comment" " 1440, EF069337.1, Archaea; Crenarchaeota; Thermoprotei; marine archaeal group 1; ">
<ATTR "Distance" "300.0"> <ATTR "NAME" "188374">

>
<NODE <ATTR "Comment" " 1279, AY591933.1, Archaea; environmental samples">
<ATTR "Distance" "300.0"> <ATTR "NAME" "104937">

Figure 19 - Complex set of attributes including font, color, and display state information for a tree. The
PTREEVIEW file format is easy to read, supports both application and user attributes per node, and is simple to
parse. The fields described in the Newick tree format, Name, Distance and Comment, are stored as attributes.

52




7. Conclusions and Future Work

This thesis has described innovative solutions to support researchers exploring
bacterial communities. The applications shown here directly address the current
computational bottlenecks faced everyday by researchers. As the size of data sets keeps
increasing and the sequencing technology keeps improving the length and quantity of reads
per run, better taxonomic and phylogenetic analysis algorithms will be needed to allow
timely analysis. Applications, such as SeqCluster, Parsinsert, and PTreeView, will enable
researchers to find the relationships between communities and discover the science behind
the larger data sets, which will ultimately lead to better solutions to the problems of

pollution and disease.

7.1. Future Work: Clustering Data Sets
7.1.1. Nondeterministic Selection of Representative Sequence

The clustering algorithm should be able to randomly select a representative from
the cluster based on its distance to the cluster center. Currently, only the sequence closest
to the center is selected as the representative. Other sequences that are close to the cluster
center should have a chance to be selected as the representative sequence, but become less
likely as the distance from the center increases. This stochastic method is important when
building trees for bootstrapping purposes, as the alternate sequences may give different

resulting trees.
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7.1.2. Benchmark Speed and Accuracy Against Other Solutions
The SeqCluster application can handle more sequences than most other solutions,
but it must be benchmarked against other popular solutions to obtain wider acceptance of

the application.

7.2. Future Work: Phylogenetic Tree and Taxonomy Classification
7.2.1. Evolutionary Molecular Models

The algorithms used for sequence comparison and calculating evolutionary distance
assume a simple molecular clock. There are better models that use more complex clock
models to determine the evolutionary time between two sequences. These should give
more accurate results for determining insertion locations and distances from common

ancestors.

7.2.2. Support Multiple Alignments per Sequence

Phylogenetic tree building is dependant on the alignment of the unknown
sequences to the set of core sequences. The alignment process will often determine a small
set of good possible alignments for each sequence, but only one is selected for output. The
best alignment picked by a scoring function is sometimes not the one picked by an expert
researcher. All of the good alternate alignments could be used as weighted inputs to
Parsinsert. The time, t, required for determining the insertion point is constant for a given
core tree. If there were s alignments for each unknown sequence, the total time for each
insertion would increase to s*t. The added benefit would be an increase in the overall
accuracy of locating the correct insertion points. The different sequence alignments may
lead to multiple areas within the tree as possible insertion points, which would lower the
confidence of the insertion point and could be resolved by selecting the highest overall
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match. The sequence could also be marked as having alternative taxonomy to allow further
study. A small adjustment to the Pasrinsert algorithm would involve comparing all of the
sequence alignments of the unknown sequence and adjusting the score using the alignment

weighting.

7.3. Future Work: Visualization
7.3.1. Output Types

Current graphical output of the tree viewer is limited to postscript files, which
allows manipulation within Adobe Acrobat for final clean up before publishing. The
application should support the common graphical formats (GIF, JPEG, TIFF) and the PDF

format.

7.3.2. Platform Independent Solution

PTreeView’s current implementation is only available on the Microsoft Windows
platform. The user interface and visualization routines were designed and written for the
Windows Graphical Interface Libraries and would require redesign for another platform’s

Graphical User Interface.
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