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Seventy-six percent of disease associated variants occur in non-genic sites of open chromatin

suggesting that the regulation of gene expression plays a crucial role in human health. Nucleosome-

free with flanking chromatin modifications, these regulatory loci are optimal platforms for tran-

scription binding and, in fact, recruit RNA Polymerase. The subsequent transcription of these sites

is an unintuitive discovery as these regulatory loci do not harbor an open reading frame.

The role these enhancer RNAs (eRNA) play in downstream gene regulation remains an

open and exciting question. However, fast RNA degradation rates challenge eRNA identification,

requiring non-traditional sequencing technologies. Global Run-on followed by sequencing (GRO-

seq) detects non-genic transcription and thus, in theory, eRNA presence. Yet GRO-seq is not

without noise and bias, predictive modeling of both the sequencing error and the stochastic nature

of RNA polymerase itself is required to discover enhancer RNA transcripts.

In short, this thesis asks: what regulates eRNA transcription? To answer this question, I

first develop two novel probabilistic models to unbiasedly determine eRNA location. A regression

method was constructed to quickly identify all transcribed regions in GRO-seq. Based on the

known enzymatic stages of RNA polymerase, a subsequent latent variable model was built to infer

the precise location of eRNA initiation. With the relevant technology developed, I undertake a

massive data integration project and show strong contextual relationships between TF-binding

events, epigenetics and eRNA transcription. I conclude by showing that enhancer RNAs can

unbiasedly quantify transcription factor activity and predict cell type.
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Chapter 1

Introduction

1.1 Biological Setup

A central goal in genetics is to understand how genotype (the unique ordering of DNA) trans-

lates to phenotype (observable qualities like height or eye color). Although some phenotypic traits

are innocuous, one’s genotype may influence cancer susceptibility, a predisposition to alcoholism or

cognitive disabilities[47, 21, 62]. For advancements in human medicine—as well as a fundamental

understanding of biology—genetics remains an exciting and active area of research.

A long way from Mendel’s pea plants, whole genome sequencing makes possible the com-

plete identification of an organism’s genotype. Resolving the human genome’s nearly 3.2 billion

nucleotides, we now know that alterations in the gene sequence of p53, kvlqt1 and adam19 correlate

with incidences of cancer, Type II diabetes and heart disease respectively[14, 173, 183]. Although

genome-wide association studies (GWAS)[25] successfully link genotypic variants to phenotype,

they require hundreds or even thousands of genomic samples to achieve significant correlations[88].

Yet furthermore, GWAS is unable to predict the phenotypic consequences of a novel genetic variant,

unassociated with a specific phenotype. In contrast, the study of gene expression—the biochemical

or molecular process by which a genotype renders a phenotype—promises to uncover why certain

genotypes result in specific phenotypes.

To summarize briefly, gene expression begins with the enzyme RNA polymerase (RNAP)

transcribing a messenger RNA molecule. Ribosomes may translate this messenger RNA into a

chain of amino acids that fold into a functional unit called a protein, culminating in an observed
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phenotype.

As predicted by this “central dogma,” phenotypically apparent genotypes occur within gene

bodies (e.g. an amino acid substitution may render a new or non-functional protein product).

However, the surprising fact remains: 76% of GWAS implicated loci reside within un-annotated,

non-genic portions of the human genome[112]. Although previously dismissed as “junk” DNA, these

cryptic regions harbor sequence motifs crucial to the regulation of gene expression by transcription

factors (TFs).

As a heritable phenotype, population variability in gene expression may arise under two

scenarios: a trans-effect where a coding mutation renders a change in protein activity or a cis-effect

where, for example, a mutation eliminates TF-binding at specific locus. A common cis-element

is a gene’s promoter: a particular DNA sequence immediately upstream the coding region that

initiates transcription. Yet another are enhancers: loci distal (≈100-10,000 nucleotides) from a

gene’s promoter.

Figure 1.1: Transcriptional Regulation by Enhancers and TFs Panels A and B show in-
creased transcription at some hypothetical gene by either the presence of a TF or an enhancer
element respectively. (C) At promoters, loss of TF binding or the presence of TF-repressor de-
creases transcript output. (D) Similarly loss of an enhancer element via DNA mutation may result
decreased target gene expression.

Enhancers, appropriately named, enhance transcription. Classical assays would artificially

copy and paste these sequences near genes lacking an enhancer and observe strong increases in RNA

production of that gene[22]. Only to complicate matters, there is no 1-1 mapping of enhancers to

genes: one enhancer may regulate many genes and many enhancers may regulate one gene[134].
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In this way, enhancers add another dimension to gene regulation, providing platforms for TFs to

finely attenuate transcript levels on a larger scale (Figure 1.1).

Although crucial to organismal homeostasis[134], the research concerning enhancers has

largely focused on single locus studies[133]. With the human genome’s search space of 3.2 bil-

lion base pairs, the identification of candidate enhancer loci poses a significant challenge. And even

with a promising locus, functional reporter assays correctly confirming enhancer activity are slow

and laborious. Yet the advent of high throughput sequencing technology allows measurement of

thousands of biomolecules in a signal experiment including enhancers. Even still, noise inherent

to sequencing technology requires the development of computationally tractable models to identify

these regulatory elements.

1.2 Regulatory Element Identification

To say without hesitation, genome sequencing has profoundly altered our view of biology.

Popular in the early 2000’s, an organism’s genome sequence was approached simply as a code-

to-be-cracked. Yet low estimates of protein coding genes (≈ 20K genes or 1.9% genome content)

makes explanation of the phenotypic consequences of an altered genotype difficult[82] which suggests

that changes in gene regulation may explain a major portion of phenotypic diversity[87]. In large

part, this propelled the assembly of a large consortium: the Encyclopedia of DNA Elements (or

ENCODE)[30]. According to the most recent ENCODE release, the consortium’s principle goal is to

“...to build a comprehensive list of functional elements in the human genome, including regulatory

elements that control cells and circumstances in which a gene is active.” This section will serve in

part to outline each datatype ENCODE collected, the statistical efforts used to quantify signal and

how it all relates to enhancer identification.

1.2.1 ChIP-seq

Supported by an enrichment of disease associated variants surrounding regulatory elements,

a hallmark of promoter and enhancer regions are conserved sequence features. For example, an
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alternating sequence of nucleotides (T,A,T,A) defines the so called promoter TATA-box found in

roughly 10% of human promoter sequences. Early studies ablated the TATA sequence and showed

loss of TFIID and RNA polymerase binding and a subsequent expression decrease in the downstream

gene[146].

Current studies estimate 1,400 transcription factors encoded by the human genome[170].

And although they exist in transcription factor “families,” different TFs bind separate DNA pat-

terns. Referred to commonly as motifs, specific orderings of DNA (e.g. ...ACTGGGAA... vs

...CTAGCCCGGGCATG...) retain lower or higher affinities for different transcription factors (e.g.

AP1 and P53 respectively).

Even still, transcription factors bind DNA in a stochastic manner: there is no single rule

or specific ordering of DNA that governs where a TF will bind. The Position Weight Matrix

(PWM)[107] model summarizes TF-DNA binding motifs as an ordered categorical distribution

over {A, T,G,C} [159]. Figure 1.2 displays the PWM for the transcription factor p53.

Figure 1.2: Position Weight Matrix of the TF p53 The height of the letter indicates the
probability of observing that nucleotide (y-axis) at that specific position (x-axis).

The genome may be efficiently scanned for high probable motif matches by computing a

likelihood ratio between the PWM model, M , and some background model B. If S = {s0, s1, ..., sm}

is an ordered set of nucleotides then the log-likelihood of S under M and B are given by equation

1.1.

LM (S) =
∑
i

log(M(i, si)) LB(S) =
∑
i

log(B(si)) (1.1)

M is a m by 4 matrix that encodes the probability of observing nucleotide j at position i and B is
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a vector of probabilities of observing nucleotide j independent of position (1.2). Our test statistic,

2(LM (S) − LB(S)), is poorly approximated by a χ2(n) and thus efficient dynamic programming

methods have been developed to compute the 4m possible likelihood ratios[158].

M =


p1,a p1,c p1,g p1,t

...
...

...
...

pm,a pm,c pm,g pm,t

 B =

[
pa pc pg pt

]
(1.2)

Even at a p-value cut off of 10−5, we expect over ≈ 64, 000 putative p53 binding sites across

the human genome. In general, studies observe little overlap between verified TF-binding sites

with high confidence motif sequences[23]. And although these sites might be bound within a

different cellular context (cell type, genotype backgrounds), prediction of true TF-binding events

from genomic sequence motifs alone is challenging. Yet research has focused on translating the

generative PWM model into a discriminative classifier utilizing popular machine learning algorithms

like linear discriminate analysis [182], support vector machines [12] and gaussian processes[149].

Such approaches have observed marginal improvements in TF binding prediction.

To identify TF binding sites within a specific cellular background, experimental assays,

like Chromatin Immunoprecipitation followed by sequencing (or ChIP-seq), can capture physical

protein-DNA interactions genome-wide. To summarize the experimental protocol briefly, formalde-

hyde is used to cross-link or irreversibly bind all proximal proteins and DNA sequences. DNA is

then sheared by sonication leaving only the protein-DNA complexes. Antibodies engineered for

a protein of interest isolate and pull-down only that DNA-bound protein and, along with it, the

associated DNA. The DNA-proteins are unlinked and the protein is washed away. Under a noise

free model, the remaining DNA results only from sites bound by the TF of interest. Via high

throughput sequencing platforms, this DNA is mapped backed to the genome and thus provides

the promised histogram of DNA-bound protein along the genome (Figure 1.3).
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Figure 1.3: ChIP-seq from demonstrative ENCODE experiment The y-axis indicates the
TF-relative frequency (number of mapped reads).

1.2.2 Chromatin State and Epigenetics

Regulatory elements are characterized by more than just transcription factor binding. Al-

though Figure 1.1 provides a useful abstraction, the genome is not everywhere homogenous but

wrapped around proteins, called histones, that serve as yet another layer of regulation[13].

Chromatin—the mesh complex of histones and DNA—itself is altered to provide more or less

conducive platforms for TF binding. Specifically, chemical modifications to a histone changes the

local distribution of electrostatic charge, either pushing neighboring histones together (inaccessible

to TF binding) or away from one another (open to TF binding). In this way, a high probable

motif sequence may remain unbound by a TF in a highly condensed chromatin context. There

exist roughly 60 verified histone modifications and, like TF-binding assays, the frequency of any

modification can be measured on a genome wide scale by ChIP-seq[130].

As an example, acetylation of the 27th lysine residue on the third histone (H3K27ac) is found

ubiquitously across all actively engaged regulatory elements (promoters and enhancers alike)[38].

Yet, H3K4 mono-methylation is found in large abundance at enhancer elements but lack signal
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at promoter regions. Previously observed in promoters (and later at enhancer loci in chapter 4),

histone modification signal shows clear bimodality and suggests a complete lack of modified histones

near the center of regulatory elements. These so called “Nucleosome Free Regions (NFRs)” (where

a nucleosome is a collection of eight histones) are a hallmark of active regulatory elements. Portions

of the DNA lacking in tight histone packing are accessible to recognition of specific transcription

factors and thus targeted regulation.

In brief summary, promoters and enhancers are marked by conserved sequence features (DNA

motifs), bound proteins (transcription factors) and epigenetic modifications. Although there exists

a straightforward evolutionary argument for conserved TF-DNA binding motifs, one might wonder

over the mechanism underlying the deposition of histone modifications. Although enzymes such

as histone acetyl and de-acetyl transferences are extensively studied[20], little is known as to their

targeted specificity. To summarize, these DNA-elements, when modified, regulate the transcript

levels of certain genes, the concentration of downstream protein product and the final observed

phenotype.

1.2.3 Regulatory Element Identification

Although a ubiquitous technique, ChIP-seq displays a high level of noise. Within the coss-

linking step, “proximal” may refer to not only bound transcription factors but any TFs within a

potentially large radius. Yet another source of noise, if the antibody used to pull down the TF-

of-interest is not completely specific, ChIP-seq signal may also emanate from other DNA-bound

proteins. For these reasons, statistical modeling has focused primarily on very stringent false

positive filters.

Seen prominently in Figure 1.3, mapped read coverage is non-stationary. In general, reads

“peak” at critical points indicating a lack of entropy and physical DNA-TF interaction. These crit-

ical points tend to be over enriched for TF binding motifs characteristic of functional cis-elements.

Referred to as peak identification[180], Model-based Analysis of ChIP-Seq data (MACs[180]) uti-

lizes a Poisson model of read coverage to assess local (size 2d window) enrichment of aligned reads.
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Summarized in equation 1.3, yi refers to the number of mapped reads at genomic coordinate i.

λi =

i+d∑
j=i−d

yj λi ∼ Poisson(λbackground) (1.3)

At some p-value cutoff (common 10−6), neighboring coordinates with over enriched aligned reads

are merged into one single call.

An extremely simple and intuitive computation, MACs inherently assumes knowledge of

the correct d, λbackground, p-value cut-off and independence of neighboring genomic coordinates.

Although some of these parameters may be estimated from the experiment itself, encoding a level

of probabilistic dependence between neighboring genomic coordinates requires a fundamentally

different method of segmentation. By in large, the most popular method for genomic analysis of

short read alignment data are first-order Hidden Markov Models (HMMs)[49].

In most Markov contexts, state changes are indexed by time. Yet under a genomic back-

ground, Markov models evolve over and are indexed by position along the genome (i). Apart from

capturing local conditional dependencies between i and i+ 1, HMMs provide nice polynomial time

algorithms (Viterbi & Forward-Backward[16]) for computing the MLE sequence of state transitions

under a fully specified HMM.

“Hidden” Markov models are so named because we do not actually observe the state sequence

{x1, x2, ..., xi, xi+1, ..., xn}, but some random variable indirectly characteristic of those states, {y1,

y2, ..., ys, yi+1, ..., yn}. Here, xi ∈ {1, 2, ...,K} refers to one of K states at genomic coordinate i.

Regardless of interpretation, the likelihood of some state sequence X is easily computed given some

set of aligned reads Y (equation 1.4).

p(x1:n, y1:n) = p(x1)p(y1|x1)

n∏
s=2

p(xs|xs−1)p(ys|xs) (1.4)

In general, most biologists or modelers do not argue over the topology of the Markov chain:

states like “enhancer locus” or “TF-binding” are all qualities of the data we wish to identify. Most

disagreement falls under how to parameterize and model the probability of observing some specific

count yi conditioned on i, p(yi|xi = k; θi). Popular forms of this emission probability function are
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provided below.

p(yi|xi = k) =

 λyik e
−λk/yi! : Poisson[144](

yi+rk+1
yi

)
pyik (1− pk)rk : Negative Binomial[7]

(1.5)

Historically, the Poisson distribution models count data, yet Poisson modeling suffers in situ-

ations of statistical over-dispersion as both the expected value and variance of yi is parameterized

by signal constant λ. A negative binomial with parameters (p, r) fits nicely as a solution to over dis-

persion as the expected value and variance are decoupled: ENB[yi] = pr
1−p and V arNB(yi) = pr

(1−p)2 .

Although, neither the Poisson or negative binomial formulation are able to learn non-linear sepa-

rability observed in other forms of high throughput datasets[10].

Although I devote a significant amount of attention to Hidden Markov models in Chapter

2, functional genomic datasets are not collected over time or space but are sampled. In short,

the random variable of interest is not the height of the histogram bar at xi but the probability

of observing the genomic coordinate xi. Owing to the memoryless property of first-order Markov

chains, the statistical non-stationarity evident in high throughput sequencing datasets cannot be

estimated in any meaningful way by an HMM. And in fact, traditional segmentation analysis will

group nearby peaks into one long classification[5].

Mixture modeling[43] seems like a nice answer to peak identification. In the finite setting,

p(xi) is broken into a sum over K distributions, each comprising their own set of parameters θk.

The generative framework selects component k from a Multinomial(~π) and draws xi from p(xi|θk).

p(xi) =
∑
k∈K

πk · p(xi|θk) (1.6)

Also referred to as a latent variable model, we observe only xi and not necessarily the component k

to which xi belongs. Given the likelihood function (equation 1.7) emits no analytic solution to the

optimal Θ∗, gradient based algorithms such as Expectation Maximization (EM) as well as MCMC

methods like Gibb’s sampling (in the case of well defined priors) may be used to perform inference

over p(k|xs).

L(Θ|Y[a..b]) =
∏

i∈[a..b]

[∑
k

πk · p(xi|θk)
]yi

(1.7)
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This thesis devotes the entirety of Chapter 3 to mixture models and their use in high throughput

sequencing datasets.

1.2.4 GRO-seq and eRNAs

Immediately following the development of ChIP-seq, antibodies specific to RNA polymerase

II were engineered and RNAP binding was mapped genome-wide. As expected, RNA polymerase

localized at promoters and gene bodies, yet peaks of RNAP-ChIP signal were observed at non-genic

loci such as enhancers[85]. Such a result was (and remains) unintuitive: enhancers do not contain a

nearby open reading frame and thus no template for a downstream protein product, so why should

RNAP and enhancers co-localize?

Initially, this result was dismissed as an artifact of either the formaldehyde cross-linking or

immunoprecipitation step integral to a noisy ChIP-seq experiment. Further evidence of technical

noise, mRNA profiles derived from RNA-seq did not indicate significant levels of transcriptional

output from non-promoter associated regulatory loci. Parallel to these RNAP-ChIP experiments,

nuclear run-on assays were being used to study RNAP transcriptional rates in the yeast model

organism S. cerevisiae[61]. A later high throughput method, global run-on followed by sequencing

(GRO-seq)[36], began to detect transcript signal at enhancers (Figure 1.4).

Enhancer RNAs (or eRNAs) currently remain a confounding discovery. Although long non-

coding transcripts (lncRNAs) are ubiquitous throughout the human genome (≈ 50% of RNA-seq

signal emanates from non-coding genic loci in humans), lncRNAs retain sequence features more

closely resembling a genic mRNA (5-prime capping, splicing, and poly-adenylation) [81]. On the

other hand, eRNAs are short nascent transcripts that are unstable and actively degraded by the

nuclear exosome[24]. For these reasons, RNA-seq—an assay that isolates and sequences all mature

messenger RNA—is unable to detect eRNA presence given their quick degradation.

Methods of quantification, like RNA-seq, profile steady-state levels of mRNA where the con-

centration of mRNA is a function of both transcription and degradation rates. On the contrary,

GRO-seq sequences nascent mRNA transcripts resulting from the activity of all cellular polymerase
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Figure 1.4: ChIP-seq from demonstrative ENCODE experiment The y-axis indicates the
relative frequency (number of mapped reads) of either TF (top 3 panels) or nascent transcription
bottom panel. GRO-seq, unlike ChIP-seq is a stranded procedure. Therefore, forward and reverse
strand mapped reads are indicated by blue or red coloring respectively. As a further visual aid,
reverse strand aligned reads are reflected across the x-axis (but of course these yi|reverse strand is
a non-negative value.)

activity, theoretically prior to RNA degradation.

To summarize the experimental protocol briefly, nuclei are isolated, frozen and starved of

nucleotides effectively pausing RNAP. After administering Sarkosyl to prevent loading of other

RNAP molecules, cells are then incubated with Bromouridine-triphosphate (BrUTP) and RNAP

resumes transcription (run-on). With the high concentration of BrUTP, all RNA molecules with the

incorporated BrUTP nucleotide result from actively transcribed RNAP. With anti-BrUTP beads,

these transcripts are isolated, sequenced and mapped back to the genome, providing a unique read-

out on not only RNA polymerase dynamics but bona-fide transcription before RNA degradation.

As an important note, GRO-seq is but one assay in a large family of nascent transcript sequencing

protocols that differ only in how RNA polymerase is paused and how subsequent transcripts are

pulled down.

Illustrated plainly in Figure 1.4, GRO-seq signal correlates well with TF binding events.

Importantly however, peaks of mapped GRO-seq reads are not distributed like their TF-ChIP
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counterpart. In particular, reads aligning to the forward strand display positive skew radiating

away from the TF binding event and conversely reads aligning to reverse strand appear negatively

skewed. Marked by this “bidirectional” transcription, accurate identification of eRNA transcription

will rely heavily on this signature.

1.3 Thesis Outline

1.3.1 Overview

Regulatory loci are vital to homeostatic gene expression. Marked by transcription binding,

chromatin modifications and disease associated genetic variants, enhancers also display a new and

novel feature: transcription. To understand the functional implications of this new class of regu-

latory elements, this thesis will build novel probabilistic models of GRO-seq and RNA polymerase

to predict sites of eRNA transcription (chapters 2 and 3). These models will

(1) comprise a set of biologically interpretable parameters, rooted in the known behavior

of RNA polymerase.

(2) guarantee unbiased and low variance estimators even in light of latent variables and

non-exponential family distribution functions.

(3) be coupled to computationally tractable algorithms for parameter estimation; written

for massively parallel platforms.

Subsequent to model specification, I will perform inference into eRNA location across all publicly

available GRO-seq datasets (as of August 2016). From this large annotation project (chapter 4),

we will learn

(1) that there exists a strong relationship between TF binding events, eRNA location and

target gene expression.

(2) that the co-occurrence of TF motif and eRNA location alone can predict transcrip-

tion factor activity.
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(3) a set of transcription factors specific and predictive of cancerous cell types.

1.3.2 Chapter 2: Transcribed Region Annotation

Enhancer RNAs are most readily detected in nascent transcript sequencing data. In a noise

free setup, each sequenced read originates from an actively transcribing RNA polymerase molecule.

Yet in reality, many sources of the GRO-seq protocol influence read mapping errors. For example,

non-nascent transcripts may be sequenced and mapped due to fragmentation biases and non-specific

anti-BrUTP bead binding. More so, GRO-seq is a population based assay where collections of cells

are very likely heterogeneous. Although heterogeneity may be smoothed by replications, the final

GRO-seq dataset comprises noise both from technical as well as biological sources.

To annotate portions of the genome experiencing contiguous levels of nascent transcription, I

developed a hidden Markov model (HMM) coupled to a logistic regression classifier. With flexibility

afforded by a logistic model, I was able to embed our features into a higher dimensional space to learn

non-linear decision boundaries. Benchmarking against other HMMs and window-based approaches

showed that my method, Fast Read Stitcher (or FStitch), yielded the highest level of precision and

recall.

Following model validation, we looked at how nascent transcripts—predicted by FStitch—

change following Nutlin treatment: a drug known to activate the transcription factor p53. We

discovered a significant increase in nascent transcripts overlapping known ChIP-p53 binding sites

as well as chromatin marks such as H3K27ac, H34Kme[1/3]. Indeed, 81% of these induced nascent

transcripts were non-genic associated indicating that a set of p53-specific enhancers were being

activated. Traditional motif discovery and enrichment analysis, however, did not recover the p53

motif from these induced nascent transcribed regions.

1.3.3 Chapter 3: Stochastic models of RNA Polymerase

Transcription by RNA polymerases is a highly dynamic process involving multiple distinct

stages of RNAP behavior. Although an HMM framework provides a straightforward noise filter, it
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is prone to over segmentation and assumes a single model genome-wide. In an effort to compensate

for model degeneracies noted in Chapter 2, I built a latent variable model that infers—at signal

base resolution—sites of RNAP loading and as such deconvolves individual nascent transcripts.

Within this chapter, I develop the theory and parameterization of mixture models. I present

a generative, probabilistic model of RNA polymerase that fully describes loading, initiation, elon-

gation and termination. I fit this model genome wide and profile the enzymatic activity of RNA

polymerase across various loci and following experimental perturbation. I observe striking corre-

lation of predicted loading events and regulatory chromatin marks. I provide principled statistics

that compute probabilities reminiscent of traveler’s and divergent ratios. I finish with a systematic

comparison of RNA polymerase activity at promoter vs non-promoter associated loci.

1.3.4 Chapter 4: eRNA Profiles Predict Transcription Factor Activity

Transcription factors (TFs) exert their regulatory influence through the binding of enhancers,

resulting in coordination of gene expression programs. While the functions of eRNAs remain

unclear, here I show that they represent a powerful readout of transcription factor activity.

In this chapter, I identified all eRNA start sites across hundreds of publicly available global

run on and sequencing (GRO-seq) datasets and showed that TF binding events co-occurring with

eRNA transcription are more likely to positively influence gene expression than those that do

not. By quantifying the distribution of TF binding motifs relative to sites of eRNA initiation, I

derived a simple statistic capable of gauging the activity of all transcription factors, simultaneously,

from a single experiment. I demonstrate how this approach can be used to indiscriminately infer

the transcription factors whose activities are influenced by cellular perturbations and in doing so

uncover dozens of previously unexplored links between diverse stimuli and the transcription factors

that they affect.

I finally show that TF activity is extraordinarily dynamic and represents an extremely sen-

sitive predictor of cell type. This approach constitutes a fundamentally unique strategy for discov-

ering links between TF activity and biologically meaningful phenotypes.



Chapter 2

Transcribed Region Annotation

Portions of this chapter are adapted from:

J. Azofeifa, M. Allen, M. Lladser and R. Dowell (2014) FStitch: A fast and simple
algorithm for detecting nascent RNA transcripts Conference: 5th ACM Conference
on Bioinformatics, Computational Biology, and Health Informatics

J. Azofeifa, M. Allen, M. Lladser and R. Dowell (2015) An annotation agnostic
algorithm for detecting nascent RNA transcripts in GRO-seq IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics

2.1 Introduction

Almost all cellular stimulation triggers global transcriptional changes. To date , most studies

of transcription have employed RNA-seq or microarrays, powerful measures of steady state RNA

levels. Unfortunately, steady state levels can be influenced by not only transcription but also RNA

stability, so these assays are not true measures of transcription. Only recently have methods for

direct measurement of transcription, genome-wide, become available. A technique, known as global

run-on sequencing (GRO-seq), simultaneously detects the amount and direction of actively engaged

RNA polymerases at every position within the genome[33]. GRO-seq has already drastically in-

fluenced our understanding of the transcription process, as most of the genome is transcribed but

rapidly degraded [80, 126, 38].

The earliest and most common approach to GRO-seq analysis is annotation centric[33, 118,

96, 74]. Yet much of transcription does not overlap protein coding annotations and appears to be

noncoding[31]. In particular, one class of nascent noncoding transcripts originate from enhancers,
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or regulatory regions within the genome. While the ENCODE project made major inroads on

identifying these critical regulatory regions[31], their precise boundaries are still difficult to ascer-

tain, so they remain largely unannotated. The transcripts that originate from these enhancers,

known as eRNAs, are unstable and lowly expressed but do appear to be critical to their regula-

tory activity[86, 172, 101, 116, 67]. They are detectable in GRO-seq and tend show bidirectional

transcription[115]. Therefore, the unbiased identification of all regions of transcription from GRO-

seq is an important and pressing problem.

At the time of this work, only two efforts have attempted to identify regions of active tran-

scription directly from GRO-seq data[4, 66, 27], though neither is fully independent of annotation.

The first used a two state Hidden Markov model by Hah et. al. that was parametrized based

on available annotations[66]. This approach has the advantage of calling large contiguous regions

as transcribed, but fails to call many unannotated regions because their length and transcription

levels do not mimic well annotated regions. Furthermore, the approach is limited in its ability to

discover transcripts that conflict with the annotation. A more recent approach, called Vespucci,

uses a sliding-window (specified by two user-dependent parameters) that merges adjacent windows

together based on read depth, but requires the user to tune the algorithm with each new dataset[4].

The windowing scheme, in principle, has the benefit of not depending on annotation. In practice,

however, because regions of transcription are often broken into discontiguous sections, Vespucci

requires the use of annotations to improve its strategy[4].

The subsequent approach combines the strengths of these previous efforts[66, 4]. In particular,

I propose a fast and robust method that takes advantage of a logistic regression classifier embedded

within a hidden Markov model as a means of learning non-linear decision boundaries that classify

regions of active nascent transcription. This approach shares a similar structure with Maximum

Entropy Markov Models[113]. This methodology is annotation agnostic, requiring only a small

number of training examples to adapt parameters to new data. It effectively identifies cohesive

regions of active transcription while maintaining a rapid runtime. Furthermore, the identification of

transcripts solely from the signal within the data uncovers distinct biological phenomena previously
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missed in GRO-seq analysis. Finally, user-friendliness was a large consideration in the design and

structure of the software.

Using a differential transcript methods, myself and the Dowell group (specifically Dr. Mary

Allen) re-analyzed an earlier GRO-seq dataset[3] at both previously unannotated transcripts and

annotated genes, demonstrating many of the earlier calls were annotation based artifacts. Shock-

ingly, we demonstrate that the major response to activating p53, is increased transcription of p53’s

own binding site.

2.2 Nascent Transcript Model

2.2.1 Description

The GRO-seq technique measures nascent transcripts produced from actively engaged RNA

polymerases[33]. Because splicing has not yet occurred, each transcript covers a contiguous region

of the underlying genome, reflecting the extent of polymerase activity. Sequencing reads obtained

from the GRO-seq protocol represent a sample from the underlying transcripts in proportion to

their relative abundances. Ideally, overlapping reads could be merged into contigs, or regions of

continuous read coverage, defining regions of active transcription. However, because of uneven

sampling, coverage within active regions may not be contiguous. Furthermore, the sequencing and

mapping process is noisy, therefore reads can also spuriously map to inactive regions.

Transcription can be modeled as a discrete time-series indexed by genomic coordinates where

transcriptional activity observed at adjacent base-pairs is correlated. Similar to prior models of

GRO-seq[66], I modeled this process as an ergodic first-order Markov chain where transcription

oscillates between active and inactive states. Unlike previous models, which classify individual

nucleotides, this model emits from each state a contig representative of an active or inactive region

(Figure 2.1). Each contig can be described by two feature classes: contig length (maximum length

of overlapping reads) and contig coverage statistics (Table A.1 ). Active states, in general, contain a

combination of long regions with high signal interspersed with short regions of relatively no signal.
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Hence this HMM framework allows for the classification of a continuous active region, containing

one or more contigs, despite the variability in coverage of individual nucleotides that is inherent in

short read sequencing data.

Figure 2.1: A schematic showing how contig length and coverage statistics discriminate
active from inactive nascent transcription. Regions of active transcription contain many
long contigs (positive length, not drawn to scale) with significant read coverage (labeled in blue)
interspersed with short regions of no coverage. Coverage statistics define mean, median, mode and
variance of reads (black bars) across a contig, see Table A.1. In segments with no reads, a gap
(labeled in green) is defined by a negative length value and all coverage statistics are set to zero.
Reads (grey bars) are represented by only their 5′ position (black points). Therefore a contig is also
a continuous region where every base has at least one read’s 5′ end at that position. Consequently,
small gaps between contigs have a high probability of being in an active call.

HMM emission and transition parameter estimation requires manual labeling of active and

inactive transcription. With such a training set, learning the conditional probabilities of a state

classification from the set of implicit feature vectors is straightforward with logistic regression. In-

deed, logistic regression comprises three main benefits: it requires little training data for parameter

estimation, it quickly converges, and it readily scales with genome size. The logistic regression

predictors are interpretable as probabilities, and therefore easily embedded into a HMM as emis-

sions. After the probability transitions of the underlying Markov chain have been estimated, the

well-known decoding algorithms such as Viterbi and Forward/Backward can be used to infer the

most probable state sequence[113].
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2.2.2 Parameter Estimation

The Markov model transition probabilities and the conditional state emission probabilities

of the HMM are estimated via a user defined, labeled training set. Given that read mapping

can be noisy and nascent transcripts can be present at very low levels, estimating parameters that

discriminate active from inactive transcription regions poses a difficult problem. However, I show in

Section 2.3.2 that surprisingly little training data is needed to retain high model accuracy—defined

as the fraction of base pairs where the user-label and classification-label agree.

Here I outline the logistic regression parameter estimation method, for a detailed exposition

see Ohno-Machado’s review [46]. The conditional probability p(k | ~x), where k∈{inactive, active}

and ~x indicates a feature vector, via a labeled training set of defined genomic coordinates repre-

senting active and inactive transcription regions. Table S1 provides a complete description of the

feature vector ~x. Clearly, p(inactive | ~x) = 1 − p(active | ~x). The later probability may be repre-

sented in terms of the sum of the coordinates of ~x, weighted by some parameter vector ~θ. To treat

this linear function as a probability, one may bound the sum to the range [0,1] via the sigmoidal

transformation as follows:

p(active | ~x) =
1

1 + e−〈~x,~θ〉
, (2.1)

where

〈~x, ~θ〉 = θ0 +

n∑
i=1

xi · θi, (2.2)

(n+ 1) is the dimension of the feature vector ~x.

A simple plot of two features, gap length (x1) and average read coverage (x3), shows that

these features may not be linearly separable (Figure 2.2A). By embedding the data into a higher

dimensional space, a polynomial kernel (equation 2.3) can represent non-linear decision boundaries

(Figure 2.2B),

f(~x, ~θ) = 〈~x, ~θ〉d + c. (2.3)

The polynomial kernel function parameters (c and d) can be set by the user in the FStitch software
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Figure 2.2: Read coverage features are not linearly separable. Points colored green rep-
resent training examples labeled active and those colored red indicate training examples labeled
inactive. The blue shading provides a contour plot of the active state probability given the feature’s
average read coverage (x3, y-axis) and the gap length between adjacent contigs (x1, x-axis in log
nucleotides). (A) uses logistic regression with a linear kernel function (i.e. d = 1 in equation 2.3),
whereas (B) uses a second-order polynomial kernel function (i.e. d = 2 in equation 2.3).

package. The kernel function is incorporated into the sigmoidal transformation as follows:

p(active | ~x) =
1

1 + e−f(~x,~θT )
. (2.4)

To maximize training and classification accuracy, the algorithm adjusts to the behavior of the

feature space. The use of a simple second-order polynomial kernel (d = 2 and c = 0) increases

the training accuracy by ∼10% in the HCT116 GRO-seq dataset (Figure 2.4). Importantly, this

∼10% increase reflects mostly lower expressed labeled transcripts suggesting that the use of the

polynomial kernel allows for greater sensitivity to under-represented, lowly transcribed regions.

To estimate the parameter vector ~θ we maximize the log-likelihood function of the training
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set D :

l(~θ,D) =

n∑
i=1

log p(ki | ~xi). (2.5)

Here D can be thought of as a N × (n + 1) matrix where N is the number of training examples

and (n + 1) is the dimension of the feature vector ~x . The ith training label, ki, is either active or

inactive.

Newton-Raphson optimization routine[19] iteratively updates ~θ until convergence. Because

this techniques utilizes a second-order Taylor series approximation of the log-likelihood function,

convergence is usually fast. The update rule is:

~θ t+1 = ~θ t −
(
HL(~θ,D)

)−1 · ∇L(~θ,D), (2.6)

where ∇ and H represent the gradient and Hessian operators with respect to the vector ~θ, respec-

tively. Finally, the most probable state sequence is estimated via the Viterbi Algorithm[121], using

the Maximum Entropy Markov model framework[113], and is given by the recurrence relation:

vt(k) = max
j∈S

(vt−1(j) · aj→k) · p(k | ~xt), (2.7)

where aj→k represents the transition probability from state j to state k of the hidden Markov

chain, which is estimated via Baum-Welch[113], S is the hidden transcriptional state space i.e.

S = {active, inactive}, and p(k | ~xt) is given in equation 2.3 with ~θ learned from the training data

using the Newton-Raphson algorithm. Here ~xt is either a gap or contig representation given in

Table S1.

Using training data to learn parameters allows users to intuitively provide regions of tran-

scriptional characterization thereby doing away with arbitrary parameter values and grid parameter

search for optimization. These parameters are learned from the data and thus adapt accord-

ingly.

2.2.3 Software Design

The purpose of FStitch is to segment the genome into regions of active and inactive nascent

transcription. The algorithm accepts as input a 5′ BedGraph file (each read counted only at its
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5′ end) of read coverage and a training set file consisting of a few segments (at least 3 segments)

labeled as active or inactive regions of nascent transcription. The training file requires only start

and stop coordinates of regions considered active and inactive yet, within these regions, the data

should be rich in feature vectors (i.e. contig lengths and coverage statistics). As defaults, FStitch

has pre-labeled active and inactive segments for a human genome based on house-keeping genes and

gene desert regions, respectively. However, care must be taken with defaults as the transcriptional

landscape varies from experiment to experiment and datasets need not be human or mapped to

hg19.

Figure 2.3: FStitch output at BRPF3. An IGV snapshot showing a sub-region in chromosome
6 around BRPF3. The first track shows typical GRO-seq data from the HCT116 dataset, with
the positive and negative strand in blue and red, respectively. RefSeq annotations are shown next.
FStitch output is below for each strand with green indicating areas of inactive transcriptional
activity, blue representing areas of active transcription on the positive strand and red on the
negative strand. The scores associated with each classification via the Logistic Regression and
Viterbi-provided Markov state sequence are also displayed. Finally, bidirectional predictions are
provided at the bottom with a score via the estimated Normal Distribution confidence interval.

FStitch outputs two bed files for positive and negative strand classifications, respectively,

that can be imported into typical genome browsers such as IGV or the UCSC genome browser,

to view the classifications in conjunction with read coverage files[165]. Figure 2.3 shows a typical

output of the algorithm. These bed files contain the genomic start and stop of each classification

and an associated probabilistic score from the Viterbi algorithm (Equation 2.7). From start to
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finish, FStitch takes ∼3.5 minutes to predict transcript annotations in the most deeply sequenced

GRO-seq dataset, HCT116 (152.4 million mapped reads)[3].

FStitch is written in the C/C++ programming language and complied using GNU compilers

later than GCC 4.2.1. The user interface is command line, resembling many popular bioinformatics

pipelines. FStitch is stand-alone and borrows from no third-party platforms, libraries or packages.

The open-source software and a comprehensive manual is freely downloadable at https://github.

com/azofeifa/FStitch/.

2.3 Model Accuracy

2.3.1 Datasets

This study takes advantage of three previously published GRO-seq datasets (labeled here by

the underlying cell line): MCF-7 [66], IMR90 [33] and the Dowell Group’s own HCT116 (DMSO and

Nutlin, wild type p53)[3], as well as three published ChIP-Pol II datasets: HCT116[73], IMR90[75]

and MCF7 [77]. For each experiment, raw reads were mapped to the hg19 genome using Bowtie2

with the command bowtie -S -t -v 2 -best[93]. A 5′ bedgraph is then generated using BedTools’s

(2.16.2) genomeCoverageBed (options: -5 -bg -strand) for each strand. Additionally, the ENCODE

project provided H3K27ac, H3K4me1, and DNase I hypersensitivity peak calls for IMR90 [115, 26],

MCF7 [58, 69] and HCT116 [58, 129], as well as ChIA-PET peak calls for HCT116[60]. Finally, to

create a list of high confidence p53 binding sites, we combined the data from seven ChIP assays for

p53[175, 127, 153, 152] and kept only sites that were found in at least 3 of the 7 assays.

Because most nascent transcription is unstable and therefore understudied[38], an under-

graduate student within the Dowell Group (Josepine Hendrix) hand annotated the entire length

of chromosome 1 from the Dowell Group’s earlier HCT116 GRO-seq DMSO dataset[3] to perform

k-fold cross validation. For all testing, 95% of the labeled dataset was removed from training and

used to assess model accuracy. To be clear, the entire labeled HCT116 training set contains 17,776

regions labeled as active. Based upon the cross validation results, 7 regions considered active and

https://github.com/azofeifa/FStitch/
https://github.com/azofeifa/FStitch/
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7 regions considered inactive were used for parameter estimation in both the IMR90 and MCF7

GRO-seq datasets. These training sets (with genomic coordinates and labels) are provided in

Supplemental Table S3.

2.3.2 Sensitivity to depth of data

To assess the sensitivity of the algorithm to the amount of training data, I utilized the hand-

annotated labeling of regions as active or inactive discussed in the previous section. The manual

annotation identifies approximately 17,000 active and inactive regions, effectively labeling roughly

36% of chromosome 1 as active. FStitch was tested over this rich labeled data using K-fold cross

validation, reserving 5% of the training data for parameter estimation and leveraging 95% for

testing accuracy.

To assess the amount of training data needed for accurate classification of active regions, the

amount of training data was incrementally decreased and the true and false positive scores were

monitored. Figure 2.4A shows that FStitch training is robust to successive decreases in the amount

of training data utilized, suggesting that very little training data is needed to achieve relatively

high accuracy. The smallest training set (0.1% of the initial dataset) consists of 3 active and 2

inactive regions and maintains scores of 95% true positive and 4.3% false negative on the testing

dataset. Furthermore, I observed that the polynomial kernel consistently outperforms the linear

kernel.

Similarly, the sensitivity of FStitch to experimental sequencing depth was assessed. To this

end, I randomly subsampled (without replacement) from the HCT116 test dataset, the single

experiment with the deepest read coverage. For each subsample, I re-estimated the parameters

via a fixed training set, 5% of chromosome 1 labels. Subsequently, I reclassified active transcript

segments and calculated the training accuracy relative to the test set. Figure 2.4B shows that this

method is robust to low sequencing depth of the dataset.
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Figure 2.4: FStitch requires little training data and is robust to low levels of GRO-seq
read coverage. (A) Classification accuracy utilizing successively decreasing amounts of training
data to learn feature vector weights, for the polynomial (d = 2 and c = 0; blue and teal) and
linear (d = 1 and c = 0; green and red) kernel. (B) Classification accuracy with successively less
sequencing depth (dataset size). In this case, 5% of all available chromosome 1 labels was used for
training and tested on 50 different subsamples of the curated dataset. TP = true positive rate and
FN = false negative rate.

2.3.3 Benchmarking FStitch & Vespucci

To evaluate FStitch to the previously published windowing method Vespucci[4], model accu-

racy was calculated for Vespucci with the default parameters over the HCT116 test dataset (Table

2.1). In addition, a grid search was performed on a subset of ranges for both Max Edge and Den-

sity Multiplier combinations and reported the performance of the best parameters obtained for

this dataset. Grid search optimization greatly increased Vespucci’s precision and recall. FStitch
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Table 2.1: Benchmarking FStitch and Vespucci Each algorithm, FStitch and Vespucci with
default parameters (Max Edge: 500 and Density Multiplier: 10,000), and Vespucci with best pa-
rameters from a grid search, G.S. (Max Edge: 10 and Density Multiplier: 2,000), are compared on
the manually annotated test set from chromosome 1. Overlap percentages are reported per base.

FStitch Active Label Inactive Label

Active Call 98.5% 1.5%

Inactive Call 0.01% 99.99%

Vespucci (default) Active Label Inactive Label

Active Call 93.97% 6.03%

Inactive Call 30.3% 60.7%

Vespucci (G.S.) Active Label Inactive Label

Active Call 99.44% 0.56%

Inactive Call 19.9% 80.1%

outperforms Vespucci, default or grid search, in both true negative and true positive classifications.

I next assessed the quality of FStitch active calls to independently derived relevant biologi-

cal datasets. As GRO-seq measures all actively engaged polymerase, in a strand specific fashion,

there is no single alternative experiment to confirm GRO-seq data. However, RNA polymerase II

is responsible for most transcribed regions and therefore comparison to Pol II chromatin immuno-

precipitation (ChIP should independently verify the location of most transcripts. To this end,

previously published Pol II ChIP-seq data for MCF7, HCT116, and IMR90 cell lines[77, 73, 75]

was obtained. Unfortunately, direct comparisons between GRO-seq and ChIP-seq are complicated

by the fact that GRO-seq is strand specific whereas ChIP-seq is not. Yet, one can reason that the

superposition of reads along the sense and anti-sense strand within GRO-seq should approximate

ChIP-Pol II read coverage within the same region.

Thus, an active call should have a higher enrichment of RNA Pol II ChIP-seq than an

inactive call. In all three cell lines, I used FStitch to identify bidirectional, active and inactive

calls. Vespucci does not contain an unbiased bidirectional transcription annotator, therefore only

active and inactive predictions were obtained. For MCF7, I utilized the published list of Vespucci

annotations but for both HCT116 and IMR90; Vespucci parameters obtained via grid search (Table

2.1) were used. I noted that the Vespucci approach is less capable of distinguishing active from
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Figure 2.5: Correlation of GRO-seq transcript calls with Pol II ChIP-seq. Pol-II ChIP-
seq read density was collected in regions labeled as bidirectional (blue), active (green) or inactive
(red) by either FStitch (on left) or Vespucci (on right). Log fold-enrichment is relative to average
Pol-II ChIP-seq read density. Statistical significance is assessed via the Kolmogorov-Smirnov test
(significance bars colored by p-value). Error bars indicate one standard deviation away from the
mean.

inactive regions as assessed by Pol II occupancy (Figure 2.5). I observed a significant enrichment

for Pol II occupancy between active and inactive FStitch regions. Additionally, I observed a high

degree of Pol II occupancy at bidirectional calls, as expected given that enhancers are known to

show significant enrichment for Pol II occupancy[86].
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2.4 Biological Analysis

2.4.1 Annotation Comparisons

To evaluate the performance of the proposed method to identify biologically meaningful

regions of active transcription, I compared the results of FStitch to RefSeq annotations. I first

classified active transcript calls on the HCT116 DMSO experiment by their overlap to genomic

annotations. Most FStitch active calls overlap a known annotation: gene, antisense to a gene, long

non-coding RNA (lncRNA), small nucleolar RNA (snoRNA), microRNA (miRNA) and transfer-

RNA (tRNA) (Figure 2.6). Of the 26.75% of FStitch active calls that do not overlap known

annotations, many can be described as bidirectional calls that overlap an H3K27ac mark; which is

characteristic of an eRNA.

Interestingly, within the unannotated active calls, a small fraction (9%) contain both an

open reading frame that spans at least 60% of the length of the call and a bidirectional call at the

5′-end. These may be unannotated protein coding genes. I translated these regions and searched

the UniProt/SwissProt protein database[32], uncovering several hits. By isolating the statistically

significant hits and tokenizing the hit descriptions, I observed that more than 95% of all hits

contained the reoccurring words putative, uncharacterized or encode.

Meta-gene analysis is a popular method of assessing the average behavior of an assay over

gene annotations[161]. By taking advantage of the high read coverage of the HCT116 GRO-seq

dataset, I constructed a meta-gene of FStitch active calls that completely overlap a RefSeq anno-

tation (n=2512). For this analysis, I averaged the read coverage within 100 uniformly distributed

proportions relative to the FStitch call (Figure 2.7). This uncovered two features of active regions:

(1) the 3′-end peak is much larger than previously detected [33, 115] and (2) there is a correspond-

ing small build up of reads along the anti-sense strand that mirrors the 3′-end peak. It should be

noted that the 3′ peak does not always correlate well with the exact 3′-end of the annotation[6].

This is likely because the 3′-end of a gene annotation is typically the mRNA cleavage site and not

the RNA Pol-II termination site.
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Figure 2.6: Active Call Characterization. FStitch active calls on HCT116 DMSO are divided
into classes based on overlap with genomic annotations. Unannotated active calls are assigned if
they have no overlap to previous annotations on either strand. FStitch called 37,591 active regions.

Given that FStitch does not rely on previous annotations, I next asked how the ends (5′ and

3′) of FStitch active calls relate to known RefSeq gene annotation ends. Specifically, I measured the

difference in genomic location between the 5′ end (3′ end) of an FStitch active call and the nearest

RefSeq annotation 5′ end (3′ end), respectively. Interestingly, the GRO-seq signal often begins

upstream of the annotated 5′ start site of RefSeq genes (Figure 2.8A). Indeed, there appears to be

two distinct populations within the 5′ ends. Therefore, I fit a mixture of two Gaussian distributions

using the Expectation Maximization algorithm[114] to the difference of 5′ ends histogram. I exam-

ined the upstream Gaussian distribution for distinguishing features and found it shows a 2.5 fold

enrichment of anti-sense transcription compared to the Gaussian centered at roughly the zero posi-

tion. This suggests that many genes have upstream bidirectional transcription, and therefore may
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Figure 2.7: Average Read Coverage of FStitch active calls. FStitch active calls on the
positive strand that completely contain a RefSeq annotation were used to calculate the average
behavior. Blue and red represent positive and negative strand coverage, respectively. For each
active region, the length was divided into 100 uniformly sized proportions and the read coverage
was averaged within each bin. The average annotated 3′ end is noted by the line and transcription
beyond the annotation is shaded. Here, I required an FStitch to completely overlap a RefSeq
annotation and the RefSeq annotation overlap at least 75% of the FStitch call.

may have overlapping or adjacent upstream enhancers[151] or promoter upstream transcripts[136].

Notably in these cases, the upstream region and the annotated gene are a single active call.

Additionally, elongation traverses several kilo-bases (average of ∼8 kb) past the 3′-end of

annotated genes (Figure 2.8B); consistent with the fact that polymerase proceeds far beyond the
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mRNA cleavage site [6, 8]. Notably, the 3′ extension is missed by earlier GRO-seq de novo transcript

detection algorithms[66, 4]. Indeed, Vespucci captures many of the same general trends of FStitch,

but typically terminates 3′ extensions earlier. Upon further examination, this may reflect the fact

that Vespucci’s default parameters are biased to highly expressed regions and the 3′ extensions are

often weakly transcribed. On the other hand, the hidden Markov model of Hah et. al. was trained

to match RefSeq annotations and is therefore unable to identify distinguishing features of nascent

transcription at either end.

Figure 2.8: Histograms comparing the active region calls of FStitch to RefSeq anno-
tations. The distance between the end of an active call and the nearest RefSeq annotation are
compared for (A) 5′-ends; (B) 3′-ends. Colors red, blue and green are Hah et. al., Vespucci (grid
search parameters) and FStitch active calls, respectively. Histograms are probability normalized.

2.4.2 Characterizing bidirectional RNA Activity

To assess the accuracy of the bidirectional predictions, I examined what fraction of the

bidirectional calls overlap enhancer marks. For this analysis chromosome 1 was excluded and used
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FStitch to predict bidirectional transcription in all three cell lines: IMR90, MCF7 and HCT116.

In all cell lines, the bidirectional FStitch calls were significantly enriched for overlapping DNase I

hypersensitivity sites and H3K27ac marks indicating that a large fraction of these calls are likely

eRNAs (Table S2).

A natural hypothesis, bidirectional predictions that overlap enhancer marks should be highly

transcribed, more so than bidirectional predictions without corresponding enhancer marks (Figure

S4). In all three cell lines, higher levels of bidirectional transcription are observed when accompanied

by a chromatin enhancer mark. As proof of concept, marks which do not overlap bidirectional

prediction show little read density indicating that the false-negative rate is low (Figure S4, in red).

Bidirectional predictions that overlap both a gene annotations and an enhancer mark show the

highest level of average transcription. Moreover, there are 342, 241 and 198 bidirectional predictions

in the HCT116, MCF7 and IMR90 datasets, respectively, that do not overlap a chromatin enhancer

mark but do show a GRO-seq transcription greater than the mean GRO-seq signal of bidirectional

predictions overlapping a DNase I hypersensitivity site or H3K27ac mark. These highly expressed

bidirectional regions may be, as of yet, undiscovered enhancers.

To examine the theory that enhancer elements are three-dimensionally connected to their gene

regulatory partner[86, 172, 101, 116, 67], GRO-seq signal was compared between three-dimensional

paired chromatin interactions. I utilized a Pol II chromatin interaction analysis by paired-end

tag sequencing (ChIA-PET) dataset in the HCT116 cell line[101]. ChIA-PET is a rather new

high-throughput technique that pulls down a protein of interest (in this case Pol II) and provides

information on long range chromatin interactions[60] associated with the protein. Therefore, I first

examined the overlap between both FStitch active calls and bidirectional predictions with paired

ChIA-PET reads. There exists a highly significant overlap (hypergeometric; p-value < 10−10)

between ChIA-PET reads and FStitch active calls.

Given the three dimensional association implied by ChIA-PET, I asked if interacting DNA

regions show a correlated GRO-seq transcription signal. When assaying for GRO-seq signal uti-

lizing only ChIA-PET read pairs, no correlation is found in transcript level (Pearson’s correlation
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Figure 2.9: Bidirectional predictions and active FStitch calls connected by a ChIA-
PET read pair show correlated GRO-seq transcription. The GRO-seq transcription level
of ChIA-PET read pairs that overlap a bidirectional call and an active call on either end are plotted,
demonstrating a strong correlation (ρ = 0.8301) in transcription (as measured by GRO-seq). Points
are colored according to genomic distance (kb) between bidirectional prediction and active call.

coefficient; ρ = 0.001). However, when ChIA-PET read pairs are categorized by association with

a bidirectional prediction, a strikingly high correlation is observed (ρ = 0.8301; Figure 2.9). Note

that I do not include cases where the ChIA-PET read pairs overlap the same FStitch active call

used to make the bidirectional prediction. Moreover, this linear relationship appears completely

independent of genomic distance. This poses an obvious question: can one predict enhancer-

gene interactions? Using a general linear model estimated from Figure 2.9, I attempted to pre-

dict enhancer-gene interactions using only GRO-seq transcription level. Unfortunately, only 7% of

enhancer-gene interaction predictions were validated by ChIA-PET read pairs. This result suggests

that while GRO-seq signal appears highly correlated between enhancers and their gene targets, ad-
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ditional information is needed to predict which enhancers are associated in three dimensions with

particular FStitch active calls.

2.4.3 Differential transcription at annotated genes: a comparison of FStitch to

Allen et. al.

In Dowell group earlier publication, the direct transcriptional targets of the transcription

factor p53 were examined in HCT116 cells. In that experiment, p53 was activated by the non-

genotoxic drug Nutlin (see [3] for complete details). Analysis was annotation centric but excluded

the first 1 kb around the annotated start to avoid the initiation peak of polymerase. Furthermore,

assessment of transcription over p53 binding sites was dependent on publicly available p53 ChIP-

seq data. As an important and thankful disclaimer, Dr. Mary Allen (a post-doctoral researcher in

the Dowell Group) helped greatly with the below differential expression analysis.

On the control GRO-seq (DMSO) and the p53 activated GRO-seq (Nutlin) independently,

FStitch predicted 37,591 active calls in DMSO and 39,097 active calls in the Nutlin treated sample.

Many active calls in both DMSO and Nutlin overlap RefSeq annotated genes (annotation overlap

for DMSO shown in Figure 2.6). In total, 16,191 (of 23,669) genes are transcribed in at least one

of the two experiments. Interestingly four large genes called as differentially transcribed in Allen

et. al. are not called as active by FStitch in either experiment. These genes appear to contain

only scattered background reads (noise), but because of their massive size still contain a large total

number of reads. The merged method was then used to identify regions of interest for assessing

differential transcription between DMSO and Nutlin.

By manual inspection, many FStitch regions of interest are much shorter than the annotated

gene. To this end, I required that for each gene at least 75% of the gene be called as differentially

transcribed. From this one can conclude that many genes, including 45 called in Allen et. al.,

do not show differential transcription along the full length of the gene. For example, PVRL4

(Figure 2.10) was called as differentially transcribed in Allen et. al. yet FStitch identifies that the

signal for differential transcription is entirely driven by a distinct small subregion within the gene.
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Figure 2.10: Differential Transcription at PVPR4. An IGV snapshot showing PVPR4, a
negative strand gene where a small portion of the gene is differentially transcribed. The region of
differential transcription (black bars) overlaps both FStitch bidirectional calls (blue bars) and p53
binding sites (green bars), indicating this may be an intragenic enhancer. The tracks, in order, are:
histograms of the GRO-seq signal observed in DMSO and Nutlin, respectively (positive strand:
blue; negative strand: red); RefSeq annotation for PVPR4; FStitch bidirectional calls in both
DMSO and Nutlin, respectively (blue bars); FStitch differential transcription calls (black bars: top
is negative strand, bottom is positive strand); location of p53 binding events (in green).

Most of these differentially transcribed regions overlap FStitch bidirectional calls, implying that

the annotation centric method was sometimes mislead by overlapping, fully contained enhancer.

In several cases, the signal for differential transcription is not uniformly distributed across

the transcribed region. The distribution of reads is not uniform, with most genes showing a 5′

peak, corresponding to polymerase initiation that is distinct from the read distribution within the

gene. The Allen et. al. analysis excluded the first 1kb of each annotated region in an effort to

examine only polymerase elongation through the body of the gene. With FStitch one can consider

the entirety of the active region. Consequently when differential transcription is driven primarily

by read depth changes at the 5′ end, the gene is called by FStitch but missed in Allen et. al.

Analogously, Allen et. al. calls genes where the gene body is changing but inclusion of the 5′ peak

washes out the differential signal. Finally, there are cases where a gene is called in Allen et. al.

but missed by FStitch because the active call overlapping the gene is much longer than the gene,
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a situation that arises in gene dense regions.

2.4.4 Differential transcription using all FStitch active calls

Importantly, FStitch is able to identify unannotated regions that are differentially transcribed.

When DESeq considers all FStitch regions of interest, 1044 regions are called as differentially

transcribed. Remarkably 75% of these regions do not overlap an annotated gene.

Figure 2.11: Overlap of differential transcription and p53 marks. FStitch calls were grouped
significance of differential transcription (significant: DESeq adj. p-value < 0.1) and overlap with a
RefSeq annotation. From top to bottom, there are 64,899 regions without differential transcription
(insignificant) and without overlapping annotation (unannotated); 782 significant-unannotated;
23,986 insignificant-annotated; and 262 significant-annotated, respectively. p53 binding site (ChIP)
overlap and p53 motif presence are assessed as described in the text.

Because Allen et. al. found differential transcription at p53 binding events, Dr. Mary Allen

hypothesized that a large fraction of the unannotated FStitch differentially transcribed regions
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would contain p53 binding events and/or p53 sequence motifs. Binding events for p53 were called

as described in Allen et. al., except requiring consensus from three of the seven publicly available

p53 ChIP datasets[127, 3]. Presence of the motif was determined by the publicly available p53

scanner algorithm, requiring a p-value < 0.01[153]. Differentially transcribed regions, both those

overlapping annotated and unannotated regions, are highly enriched for marks of p53 (either binding

or motif). Because annotated regions tend to be much longer than unannotated, they are more likely

to contain a p53 motif and/or ChIP site. In fact, most regions that are differentially transcribed

(73%) overlap an experimentally determined p53 binding event.

Lastly, I sought to determine which unannotated FStitch differential transcription calls are

themselves p53 enhancers. To this end, I examined their overlap with known enhancer marks

H3K27ac, H3K4me1 and DNase I hypersensitivity (Figure 2.12). Unannotated differentially tran-

scribed FStitch calls are over enriched for enhancer marks, relative to background expectation.

Indeed, the three enhancer marks (H3K27ac, H3K4me1 and DNase I hypersensitivity) are more

likely to co-occur in the differentially transcribed set. Interestingly, 21.2% of these regions are

paired with another differentially transcribed FStitch call in the HCT116 ChIA-PET study. This

overlap far exceeds the expectation (0.01%) that a random FStitch call will pair with a differentially

transcribed partner by ChIA-PET.

2.5 Conclusions

FStitch is a fast and robust algorithm for the identification of transcripts within GRO-seq data

that is annotation agnostic. Parameters of the algorithm are learned from small amounts of training

data and can adapt readily to low depth of sequencing. By taking advantage of logistic regression,

a non-linear classification of the feature space is learned. This classifier is then embedded within a

Hidden Markov model framework, so as to identify contiguous segments of active transcription. The

active calls from this algorithm correspond well to independently obtained secondary datasets (such

as Pol II ChIP-seq and ChIA-PET) and can be used to identify sites of bidirectional transcription

within a dataset or to examine differential transcription between datasets. FStitch is user friendly



38

Figure 2.12: Overlap of differential transcription with enhancer marks. FStitch calls
that do not overlap any RefSeq annotation were grouped by differential transcription by DESeq
(significant: adj. p-value < 0.1). Regions were assessed for overlap with enhancer marks: H3k27ac,
H3K4me1, and DNase I hypersensitivity[58, 129].

and fast, with classifications easily viewed on common genome browsers.

FStitch determines its active calls purely on the signal within the data. In regions of dense

and/or overlapping transcription, the gaps between distinct transcripts are short to nonexistent.

Consequently, FStitch makes long active calls that likely contain multiple transcripts. Additionally,

the lack of pre-defined regions of interest complicates the assessment of differential transcription.

However, the gains in insight about transcription and regulation warrants the added complexity.

Using FStitch, we learned several interesting new features of transcription at previously

annotated genes. Indeed, gene transcription progresses much farther than the 3′-end of the mRNA

cleavage site. Remarkably, some of the active calls that are unannotated show signatures of open
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reading frames, implying they may be under-appreciated genes.

More work is needed to better resolve the transcriptional dynamics observed within genes,

such as the 5′ and 3′ peaks. These peaks are reminiscent of patterns seen in unstranded Pol II ChIP

data and likely correspond to distinct stages of RNA polymerase activity[59]. Unfortunately, the

height and spread of these peaks vary from gene to gene, making their precise detection difficult.

Chapter 3 deals almost entirely in building models to deconvolve this peak signal from gene body

elongation.

Reanalysis of a Nutlin experiment displayed widespread differentially expressed FStitch calls.

I showed that these differentially expressed nascent transcripts were extremely likely to overlap well

established p53 binding sites (by ChIP). Given that transcription factors, such as a p53, bind DNA

in a sequence specific fashion, it might be possible to combine models of GRO-seq with DNA

sequence (TF motif) information to infer changes in TF-activity following a stimulus. Chapter 4

explores this hypothesis by monitoring eRNA profiles across different treatments and cell types. In

conclusion, this work demonstrates that GRO-seq (in conjunction with a tool to identify nascent

transcripts) can be a rich source of insights into transcription and its regulation.



Chapter 3

Stochastic models of RNA Polymerase

Portions of this chapter are adapted from:

J. Azofeifa and R. Dowell (2016) A generative model for the behavior of RNA
polymerase Bioinformatics

M. Lladser, J. Azofeifa, M. Allen and R. Dowell (2016) RNA Pol II transcription
model and interpretation of GRO-seq data Journal of Mathematical Biology

3.1 Introduction

Gene expression requires RNA Polymerase II (RNAP) recruitment to promoters and sub-

sequent signaling cues to direct RNAP to fully transcribe the protein coding region [15]. With

the advent of high throughput sequencing data, RNAP’s location has been profiled genome-wide

providing deep insight into the enzymatic stages of transcription. In brief, RNAP recruitment,

initiation, pause, pause release, elongation and termination are highly controlled transcriptional

stages that are distinctly regulated [91, 76, 128].

Nascent transcription assays, such as Global Run-On (GRO-seq), Precision Nuclear Run-on

(PRO-seq) and Native Elongating Transcript (NET-seq), measure the production of transcripts

from all cellular RNA polymerases genome-wide [33, 91, 128]. Given their high degree of resolution

and strand specific nature, these assays have tremendous potential to refine my understanding of

each stage of the transcription process. Indeed, these assays have been used to study the transition

from paused to elongating polymerase, enhancer RNA transcription and sites of RNAP termination

[54, 9]. Yet the precision of these techniques depends on an inherently noisy sequencing process



41

with biases in both the experimental protocol [91] and read mapping strategies. To fully explore

the richness of nascent transcriptional assays requires the development of biologically motivated

models of RNAP that provide meaningful summary statistics of the data.

To identify nascent transcripts within nascent transcription data, work has primarily focused

on segmentation based algorithms such as hidden Markov models (HMMs) [11, 27] and windowing

approaches [4]. Indeed, chapter 2 of this thesis outlined a nascent transcript annotation method,

FStitch. These “transcribed regions” share similar statistical properties such as comparable lev-

els of mapped reads. However, mapped reads within these regions are distinctly non-stationary.

Seen commonly in chromatin immunoprecipitation followed by sequencing (ChIP-seq) for RNAP,

“peaks” of GRO-seq mapping occur at both promoter proximal and enhancer regions [124]. In fact,

traditional segmentation analysis tend to group these visually distinct elements into one long clas-

sification. Consequently, “transcribed regions” often do not correspond to individual transcripts.

Within transcribed regions, the behavior of polymerase lends itself to substructure. For

example, the initiating form of polymerase pauses and produces bidirectional peak signatures up-

stream the gene body [91, 15]. Several recent efforts have focused on identifying the bidirectional

transcripts characteristic of initiating/paused RNAP using supervised learning approaches such as

naive Bayes [115], support vector regression [38] or logistic regression [11]. Although each approach

shows promise, these classifications lack an easy biological interpretation as learned regression co-

efficients do not directly represent a biological process. Furthermore, methods that focus solely on

the bidirectional peak signal fail to capture the productive elongation stage of transcription. In

large part, the following chapter outlines the theory and parameterization of mixture models to

deconvolve the separate stages of RNA Polymerase activity.

3.2 Modeling RNA Polymerase

Evident in Figure 3.1, their exist two forms of RNAP: (1) The initiating or paused form of

RNA Polymerase (immediately subsequent to RNAP loading) and (2) the elongating stage where

RNAP actively transcribes the gene body into a nascent transcript. From here on out, I’ll refer to
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Figure 3.1: GRO-seq and Nascent Transcript Annotation (Degenerate Case)GRO-seq
read coverage from an HCT116 cell line suggests that the nascent transcripts annotated by FStitch
are not reflecting the underlying non-stationarity of the data and dynamics of RNAP.

Z as the random variable that represents the genomic position of RNA polymerase and this section

will serve to outline in isolation three models of Z: the double geometric, exponentially modified

gaussian and the generic poisson point process. The following section will then construct a mixture

model from weighted linear combinations of these individuals models.

3.2.1 Double Geometric Distribution

3.2.1.1 Description

Depicted graphically in Figure 3.2, RNAP is first recruited to some critical site in the genome

µ. The parameter µ might represent an annotated transcription start site or perhaps even the the

site of sequence specific binding of a transcription factor. In any case, according to a model

we (Dowell group and Dr. Manuel Lladser) published in early 2016, RNAP will always bind

upstream from µ. This constraint was largely influenced by the fact that the GRO-seq data we were

investigating (Drosophila melanogaster) did not show stranded, bidirectional transcription. Let U

indicate the upstream displacement of RNAP from µ, one might model this random variable as a

geometric distribution with some success probability u. Immediately following upstream loading,
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RNAP processes 5-prime to 3-prime, transcribing a small and abortive transcript, detectable by

GRO-seq. Let D be the random variable governing this downstream walk, we chose to model this

as a Markov chain or geometric distribution with success probability d.

Z ∼ µ− U +D (3.1)

Figure 3.2: Model of RNA polymerase loading and initiation for Drosophila
melanogaster. The above cartoon depicts the schematic of the two one dimensional random
walks with the associated density functions referred to as an asymmetric double Geometric distri-
bution. In this way, the height of the density function follows the probability of an RNA polymerase
molecule present at that genomic coordinate.

A random variable Z is said to have an (asymmetric) Double Geometric distribution with

parameters (u, d) when it has the same distribution as (−U) +D, where U and D are independent

Geometric random variables with means (1/u) and (1/d), respectively. In particular, solving for the

convolution of D − U the probability mass function of Z is given in equation 3.2.1.1, importantly
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Z takes discrete integer values i.e. Z ∈ Z .

pµ,u,d(z) =
ud

u+ d− ud
·

 (1− u)µ−z for z ≤ µ;

(1− d)z−µ for z ≥ µ.

3.2.1.2 Parameter Estimation

With a model of the initiating form of RNA polymerase, I would like to perform estimation

of µ, u, d given GRO-seq read coverage data. Let D = {z1, z2, .., zn} be a set of aligned GRO-seq

reads at some genomic coordinate of interest (this could be a genic locus or nascent transcript

annotation via FStitch), then the likelihood function I seek to optimize is provided in equation 3.2.

l(µ, u, d|D) =

N∏
i=1

p(zi);L(µ, u, d|D) =

N∑
i=1

ln p(zi) (3.2)

In the case where u = d = p there exists an analytic solution to the optima of l(µ|D,u, d) or

l(µ|D, p) .

L(µ, p|D) =
N∑
i=1

ln
p2

2p− p2
+ |µ− zi|(1− p)

∂

∂µ
L(µ, p|D) =

N∑
i=1

sgn(µ− zi)(1− p) ≡ 0

where sgn(x) = I(x > 0)− I(x < 0)

(3.3)

If N is odd then µ̂ is the median of my data observation. If N is even, the median statistic is not

uniquely defined and any number between the middle pair of D will optimize equation 3.3, however

it is common practice to take the center value of this pair.

In the case where d 6= u and µ is known, there still exists—although a somewhat more

involved—analytic expression to the optima of equation 3.2. This proof largely follows that in the

Lladser 2016 paper but with minor exceptions that I think makes the notation a little easier.

L(u, d|D, µ) = ln
ud

u+ d− ud

[ ∑
zi:zi≤µ

(µ− zi) ln(1− u) +
∑

zi:zi≥0

(zi − µ) ln(1− d)
]

(3.4)

Define αµ =
∑

zi:zi≤µ zi and βµ =
∑

zi:zi≥µ zi and I solve for the gradient in equation 3.5.
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∂

∂u
L(u, d|D) =

1

u
− 1− d
u+ d− ud

−
[ αµ

1− u

]
∂

∂d
L(u, d|D) =

1

d
− 1− u
u+ d− ud

−
[ βµ

1− d

] (3.5)

Equation 3.5 shows two coupled non-linear equations in u and d. Even still, after a fair bit of

algebra I can rewrite equation 3.5 to highlight some common features between the two (equation

3.6).

αµ = (1− u)
d

u

1

u+ d− ud

βµ = (1− d)
u

d

1

u+ d− ud

(3.6)

Using the common factor u
d , we can combine these two expressions as the product of αµ and βµ

and solve for the roots of this polynomial. Note this also assumes that invertibility of αµ and βµ

in this way, we must assume that d ∈ (0, 1) and u ∈ (0, 1) are in the closed unit interval. Finally,

the last step is just the simple use of the quadratic formula (equation 3.7).

αµβµ = (1− u)(1− d)
1

(u+ d− ud)2

0 =
1

(u+ d− ud)2
− 1

(u+ d− ud)
− αµβµ

u+ d− ud =
1 +

√
1 + 4 + αµβµ

2
≡ γµ

(3.7)

Also note that, d − ud = γµ − u and finally I can solve for u and d in isolation which finishes the

MLE computation.

αµu = (γµ − u)
1

γµ
; û =

1

αµ + 1/γµ

βµd = (γµ − d)
1

γµ
; d̂ =

1

βµ + 1/γµ

(3.8)

Although the MLE solution in equation 3.8 seems a bit esoteric, upon reflection we can gain some

intuition. Namely, the statistics of the data—αµ, βµ, γµ—all depend on µ. In this way, I can see

a the realization of a kind of skew computation; i.e. if αµ � βµ then it is likely the case that

1/u� 1/d or u� d.
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3.2.1.3 Discussion

The asymmetric double geometric (aDG) distribution is a useful first step towards a stochastic

model of RNAP. First of all, the distribution captures a natural skew observed in GRO-seq data

i.e. u is in no way required to equal d. More so, the aDG model interprets Z as a discrete random

variable. This is intuitive from a data-driven standpoint as GRO-seq read coverage is indexed by

position along the genome and under a genomic coordinate system these are discrete values.

Not without its short comings, the aDG approach to GRO-seq is an un-stranded model. This

is a particularly severe disadvantage given that GRO-seq is in fact a stranded procedure and most

organisms show bidirectional transcription. For example, the initiating peak of forward strand

genes appear positively skewed and reverse strand genes appear negatively skewed. Yet an aDG

model will not take such biological knowledge into account.

A product of mathematical convenience, there is no biological reason that RNAP should load

always upstream µ. More so, a closed form or numerical solution to the estimation µ̂ does not exist.

Within the Lladser 2016 paper, I computed µ̂ by brute force search over each possible µ; using the

MLE computation of u and d outlined above. Taking these concerns into mind, I developed a new

model of RNA polymerase II loading and initiation discussed next.

3.2.2 Exponentially Modified Gaussian

3.2.2.1 Description

Here I present a probabilistic model of transcription that captures both the position Z and

bound strand S of RNAP (Fig. 3.5) while relaxing some of the assumptions made within the

Double Geometric. At protein coding genes, RNAP is first recruited to the promoter region at

the transcriptional start site (TSS). I model the loading position X as a Gaussian distributed

random variable with parameters µ, σ2 where µ represents the typical loading position and σ2 the

amount of error in recruitment to µ. Upon recruitment, RNAP selects and binds to either the

forward or reverse strand which I characterize as a Bernoulli random variable S with parameter π.
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Figure 3.3: Model of polymerase activity. A summary of the probabilistic model (on left,
see text for full description of parameters) with examples of data generated from the model (on
right). Here “Loading” refers to recruitment of polymerase and pre-initiation complex formation,
“Initiation” refers to initiation of transcription and promoter-proximal pausing, and “Elongation”
refers to productive elongation following pause release [59, 1, 98, 76].

Following loading and pre-initiation, RNAP immediately escapes the promoter and transcribes a

short distance, Y . I assume that the initiation distance (also referred to as entry length [76]), is

distributed as an exponential random variable with rate parameter λ. For paused polymerase, the

final genomic position Z of RNAP is a sum of two independent random variables (equation 3.9).

Z|S ∼ X + SY (3.9)

In equation 3.9, S ∈ {−1,+1} represents the reverse and forward strand decision respectively.

Since RNAP processes in a 5′ → 3′ direction, S also encodes the signed displacement away from µ.

I solve these convolutions analytically and provide a properly normalized probability distribution
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function (equation 3.10) governing the loading position and entry length of RNAP.

h(z, s;µ, σ, λ, π) = λφ(
z − µ
σ

)R(λσ − sz − µ
σ

)1(s)

1(s) =

 π : s = +1

1− π : s = −1

(3.10)

From equation 3.10, φ(·) denotes the standard normal distribution and 1(·) an indicator function.

R(·) represents the Mill’s ratio which is defined as (1 − Φ(·))/φ(·) where Φ(·) is the cumulative

distribution function of the standard Gaussian density. To note, the functional limits of h(z, s)

as 1/λ and σ tend to zero are Gaussian and exponential density functions respectively. For these

reasons, h(z, s) has been referred to as an exponentially modified Gaussian [142].

3.2.2.2 Moment Estimation

As is the case with the asymmetric distribution, I would like perform inference over µ, σ, λ

and π given set of aligned GRO-seq reads. Let D = {(z1, s1), (z2, s2), ..., (zn, sn)} be a independent

and identically distributed set of random variables with density function outlined in equation 3.10;

h(z, s;µ, σ, λ, π). The simplest statistic of D—the proportion of forward strand binding RNAP—

provides a straightforward moment estimate for π (equation 3.13).

N+ =

N∑
i

1(si > 0) N− =

N∑
i

1(si < 0)

π̂ = N+/N

(3.11)

Indeed, the expected value of π̂ is unbiased (E[Θ̂] − Θ = 0) and as N → ∞ I see the variance

converges to zero equation 3.12 .

E[π̂] =
1

N
E[

N∑
i

1(si > 0)] =
1

N

N∑
i

E[1(si > 0)]

=
1

N
Nπ = π

Var(π̂) =
1

N2
Var(

N∑
i

1(si > 0)) =
1

N2

N∑
i

Var(1(si > 0))

=
1

N
π(1− π)

(3.12)
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With Z as the sum of two independent random variables, the E[Z] = µ+ (2π − 1)/λ and so

statistical moments (lacking strand information) will not decouple µ, σ and λ. However, because I

have knowledge of strand information, si, I can in fact estimate µ and λ based solely on the first

moment of the data.

Z̄+ ≡
∑N

i=1 ziI(si > 0)

N+
Z̄− ≡

∑N
i=1 ziI(si < 0)

N−

µ̂ =
1

2
(Z̄+ + Z̄−)

ˆ1/λ =
1

2

∣∣∣Z̄+ − Z̄−
∣∣∣

(3.13)

To show unbiased properties of µ̂ and λ̂, I proceed in the same fashion as I did for π̂ (equation

3.14). Note, N+ corresponds to the number of forward strand binding RNAP enzyme where any

specific molecule will bind to forward strand with probability π. Subsequently, N+ is distributed

as a binomial distribution with parameters π and N = |D| and conversely N− is distributed as a

binomial distribution with parameters 1− π and N = |D|.

E[µ̂] =
1

2
(E[Z̄+] + E[Z̄−])

=
1

2

(
E
[ 1

N+

] N∑
i=1

E[zi]E[I(si > 0)] + E
[ 1

N−

] N∑
i=1

E[zi]E[I(si < 0)]
)

E[ ˆ1/λ] =
1

2
|E[Z̄+]− E[Z̄−]|

=
1

2

∣∣∣E [ 1

N+

] N∑
i=1

E[zi]E[I(si > 0)]− E
[ 1

N−

] N∑
i=1

E[zi]E[I(si < 0)]
∣∣∣

(3.14)

Although tempting, E[g(X)] 6= g(E[x]) or— specific to this case—E[1/N+] 6= 1/E[N+]. However by
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use of a first-order Taylor series expansion, I can assert that E[1/N+] ≈ 1/E[N+] (equation 3.15).

Taylor Expansion about x0

g(x) = g(x0) +
g′(x0)

1!
(x− x0) +

g′′(x0)

2!
(x− x0)2 + ...

Define and note:

g(X) = 1/X; g′(X) = −1/X2;x0 = E[X]

Then:

g(X) ≈ 1

E[X]
− 1

E[X]2
(X − E[X])

E[
1

X
] ≈ E[

1

E[X]
]− E[

1

E[X]2
(X − E[X])]

=
1

E[X]
− 1

E[X]2
E[(X − E[X])] =

1

E[X]

(3.15)

To summarize, using the fact that E[1/N+] ≈ 1/Nπ and E[1/N−] ≈ 1/N(1 − π) I can finish the

proof and show that µ̂ and λ̂ are approximately unbiased, equation 3.16.

E[µ̂] =
1

2

( 1

Nπ
Nπ(µ+ 1/λ) +

1

Nπ
Nπ(µ− 1/λ)

)
= µ

E[ ˆ1/λ] =
1

2

∣∣∣ 1

Nπ
Nπ(µ+ 1/λ)− 1

Nπ
Nπ(µ− 1/λ)

∣∣∣ = 1/λ

(3.16)

With µ̂, λ̂, π̂ defined as unbiased estimator, I can finally turn to estimation of σ2; the variance in

RNAP loading at µ. Define S to be the sample variance ( 1
N

∑N
i=1(zi − µ̂)2) then I can estimate σ2

in terms of S and 1/λ̂2. Note that by ˆ1/λ2 ≈ 1/λ̂2 by a similar taylor series expansion outlined

above.

σ̂2 = S − 1

λ̂2

E[S] = E[

N∑
i=1

(zi − µ̂)2] =

N∑
i=1

E[(zi − µ̂)2]

=

N∑
n=1

E[z2
i ]− 2E[zi]E[µ̂] + E[µ̂]2 =

N∑
i=1

Var(zi)

=
1

N
N(σ2 + 1/λ2)

E[σ̂2] = (σ2 + 1/λ2)− 1/λ2 = σ2

(3.17)

Previous efforts at estimating µ, σ2, λ required at least third-moment information from D[?].

However, I have presented a slightly different model where π ∈ (0, 1) and thus I require only first
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and second-order moment information to compute unbiased estimators of µ, σ2 and λ. Importantly

however, if π = 1 or π = 0 the above expressions are completely degenerate and no longer share

nice asymptotic properties of convergence in probability. Even still, these statistics are easy to

compute and can be used as starting points to a more accurate numerical algorithm (Expectation

Maximization) to compute MLE estimates of µ̂, σ̂, λ̂.

3.2.2.3 Maximum Likelihood Estimation

Although moment estimators display nice asymptotic properties, the estimators so far dis-

cussed will fluctuate wildly as the strand bias π → 0 or π → 1. Moreover, this methodology

will be useless when I progress to a mixture model setting where there may be potentially many

overlapping Loading/Initiation sites and elongation regions where I can make no longer an iden-

tically distributed assumption. In brief, this section will serve to develop a numerical method to

compute maximum likelihood estimators (MLE) for µ, σ, λ, π in the case where D is i.i.d. from

h(z, s;µ, σ, λ, π) and to prepare for the final mixture model setting.

In the usual fashion I can define the (log-)likelihood function of Θ = {µ, σ, λ, π} given my set

i.i.d. observations D in equation 3.18.

L(Θ|D) =

N∏
i=1

λφ(
zi − µ
σ

)R(λσ − si
zi − µ
σ

)πI(s>0)(1− π)I(s<0)

lnL(Θ|D) =

N∑
i=1

ln[λφ(
zi − µ
σ

)R(λσ − si
zi − µ
σ

)] + I(s > 0) lnπ + I(s < 0) ln(1− π)

(3.18)

Proceeding with the easiest estimator first (π) I see that maxima of equation 3.18 with respect

to π (equation 3.19) is exactly the moment estimator in equation 3.13. As is the usual case with

likelihood functions, maximizing the log-likelihood maximizes the likelihood function as ln(.) is a

monotonic transformation.

∂ lnL(Θ|D)

∂π
= N+

1

π
−N−

1

1− π
≡ 0

= (1− π)N+ − πN− = N+ − π(N+ +N−)

π̂ =
N+

N+ +N−

(3.19)
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Solving equation 3.18 for optimal µ, λ, σ presents however a different challenge. Most notably, the

Mill’s ratio which wraps all these parameters into a single expression is defined as (1 − Φ(·))/φ(·)

where Φ(·) is the cumulative distribution function of the standard Gaussian density given in equa-

tion 3.20.

Φ(x) =
1

2
+

1

2
√
π

∫ x/
√

2

−x/
√

2
e−t

2
dt (3.20)

Indeed, the integral in equation 3.20 is the error function and emits no closed form solution,

making optimization of equation 3.18 difficult. In brief, I was unable to decouple parameters in

terms of statistics of the data and thus unable to find a closed form solution for this optimization

problem. Fortunately however their exists a numerical procedure—the Expectation Maximization

algorithm—that is successful in computing MLE estimates of µ, σ2, λ.

3.2.2.4 EM algorithm for the non-mixture case

In constructing a numerical or iterative procedure in optimizing equation 3.18, I seek an

update procedure that monotonically increases p(D|Θ) with every iteration i.e. L(Θt+1) > L(Θt).

Here, Θt indicates some guess at the parameters {λ, µ, σ, π} and Θt+1 indicates an “updated”

estimate on the true Θ.

Due to the convolved normal and exponential distribution, p(D|Θ) poses a sincere challenge

simply because zi is not uniquely defined—zi = xi+siyi. Yet knowledge of xi or yi would effectively

decouple the convolution in p(zi, si|Θ) and—since xi and yi are assumed independent—µ, σ and λ

could be optimized for in the generic MLE case of a Gaussian and Exponential random variable.

Although xi and yi are unobserved, I could treat them as random variables and proceed in the

usual fashion of a joint distribution (equation 3.21). Due primarily to mathematical convenience,

I choose to assume that yi or Y = {y1, ..., yn} is known and therefore “completes” the data. To be

clear , xi = zi − siyi.

L(Θ) = p(D|Θ) =

∫
Y
P (D,Y|θ) (3.21)

Since my goal is to maximize equation 3.21 as a function of Θ, I would like an algorithm that
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maximizes the difference between L(Θt+1) − L(Θt). Interestingly, this is the only requirement

needed to derive the EM algorithm (equation 3.22).

lnL(Θt+1)− lnL(Θt) = ln

∫
Y
P (Z|Y, θt+1)p(Y|Θt+1)− ln p(Z|Θt)

= ln

∫
Y
P (Z|Y, θt+1)p(Y|Θt+1)

p(Y|Z,Θt)

p(Y|Z,Θt)
− ln p(Z|Θt)

≥
∫
Y
p(Y|Z,Θt) ln

p(Z|Y,Θt+1)p(Y|Θt+1)

p(Y|Z,Θt)p(Z|Θt)

= δ(Θt+1,Θt)

(3.22)

The last inequality in 3.22 used the generalized Jensen’s inequality to bring the logarithm

inside the integral. In brief, since lnL(θt+1) ≥ lnL(θt) + δ(Θt+1,Θt) then improving δ(Θt+1,Θt)

will also increase L(Θt+1). And of course, I would like to make this improvement as large as possible

therefore maximizing δ(Θt+1,Θt) with respect to Θt+1 will complete the EM algorithm, equation

3.23.

∂δ(Θt+1,Θt)

∂Θt+1
= dΘt+1

∫
Y
p(Y|D,Θt) ln p(D|Y,Θt+1)p(D|Θt+1)

= dΘt+1

∫
Y
p(Y|D,Θt) ln p(D,Y|Θt+1) ≡ 0

(3.23)

From equation 3.23, there are now two needed expressions p(yi|zi, si, θt) and p(zi, si, y|Θt+1). The

later of these two expressions is substantially easier, so I can start with that (equation 3.24).

ln p(zi, si, y|Θt+1) = ln
1√

2πσ2
e−

(zi+siy−µ)
2

2σ2 λe−λy

= ln
1√

2πσ2
− (zi + siyi − µ)2

2σ2
+ lnλ− λy

(3.24)

Expanding (zi + siyi − µ)2, I can see that coupled to the integral of p(y|zi, si,Θt) I will need to

compute two expectations E[y|zi, si,Θt] and E[y2|zi, si]. Omitting for the moment the expression

of the expectation operators, equation 3.23 can now be fully expanded.

∂δ(Θt+1,Θt)

∂Θt+1
= dΘt+1 log

Nλ

σ
√

2π
−

N∑
i=1

[
λE[Y |zi, si; θt]+

1

2σ2

(
zi

2 − si E[Y |zi, si; θt] + E[Y 2|zi, si; θt]− 2µ(zi − si E[Y |zi, si; θt]) + µ2
)] ≡ 0 (3.25)

Completing the differentiation and solving equation 3.25 recovers the “update rules” of the EM

algorithm for µ, σ, λ. I can see that in the expectation form they bare a striking resemblance to the
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form of the MLE in the normal and exponential case in isolation (equation 3.27).

µt+1 :=
1

N

N∑
i=1

E[X|zi, si; θt]

1

λt+1
:=

1

N

N∑
i=1

E[Y |zi, si; θt]

σt+1 :=
1

N
[
N∑
i=1

E[X2|zi, si; θt]− 2µ
N∑
i=1

E[X|zi, si; θt] +Nµ2]

(3.26)

In a verbose manner, equation 3.27 provides the required expectation computation, here R(.) again

refers to the Mill’s ratio. Note that expectations over X given zi, si and θt can be shown easily

from the linearity of expectation.

E[Y |zi, si; θt] = si(z − µ)− λσ2 +
σ

R(λσ − si(zi − µ)/ σ)

E[X|zi, si; θt] = zi − si E[Y |gi; θt]

E[Y 2|zi, si; θt] = λ2σ4 + σ2(2λ(µ− z)si + 1) + (zi − µ)2 − σ(λσ2 + si(µ− zi))
R(λσ − si(zi − µ)/ σ)

E[X2|zi, si; θt] = E[X|gi; θt]2 + E[Y 2|gi; θt]− E[Y |gi; θt]

(3.27)

3.2.3 Poisson Point Process

So far, I have discussed models of Z—the genomic position of RNAP—only during the Load-

ing/Initiation phase. Yet subsequent to loading and initiation, RNAP will process 5′ to 3′ and

transcribe the entire length of the gene body. This stage of RNAP dynamics is termed elongation.

To model Z under RNAP-elongation requires a fundamentally different model than those governing

loading and initiation dynamics.

Figure 3.4 displays my current understanding of RNAP polymerase elongation. Following a

signaling cue, RNAP transcribes the entirety of the gene body, halting after some distance L or at

some genomic coordinate ls. Given that previous studies have shown that RNAP is very processive,

I reasoned that a statistical model of RNAP should reflect stationarity between [µ, µ+ L].

Let Nt be the number of GRO-seq reads observed up until some coordinate µ+t. In this way,

Nt is right continuous. More so, I would like p(Nb −Na = k) to be independent of p(Nd −Nc = k)
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Figure 3.4: Model of RNA polymerase elongation. (Top) A cartoon schematic of RNAP
processing through the gene body and transcribing the entire length of the protein coding region,
referred to as transcriptional elongation. (Bottom) Under a Poisson point process model of RNAP
dynamics, the probability that a genomic coordinate (Z) is observed by GRO-seq between [µ, µ+L]
is a uniform random variable.

given that (a, b] and (c, d] are disjoint intervals. To be absolutely explicit about my notion of

statistical stationarity: p(Nb −Na = k) = p(Nb+t −Na+t = k), i.e. the random variable governing

nascent transcript identification or RNAP location will not depend on time. This encodes a level

of memorylessness into my system.

Although previously defined as a set of i.i.d. random variables, for the moment consider Z

as a Poisson process with rate parameter α. If RNAP releases from the DNA at termination sites,

ls = {lf , lr} for the forward and reverse strand respectively than the position of aligned GRO-

seq reads should be i.i.d from a uniform distribution (equation 3.28) between the loading (µ) and

termination sites (ls).

u(z, s;µ, ls) =
1(z, s)

s · (ls − µ)

1(z, s) =

 1 : sz ≥ sµ; sz ≤ sls

0 : otherwise

(3.28)

To show that a Poisson process model of RNAP implies a uniform distribution of aligned

nascent transcripts, i.e. Z, let N(ls) correspond to the number of aligned reads on strand s

between [µ, ls] or [ls, µ] for the forward and reverse strand respectively. When N(ls) = 1, this is a

straightforward computation (3.29).
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p(z ≤ s|N(ls) = 1) =
p(z ≤ s,N(ls) = 1)

p(N(ls) = 1)

= p([0, z) = 1, [z, ls) = 0)/αlse
−αls

= (αze−αz)(α(ls − z)e−α(ls−z))/αlse
−αls

=
z

ls
Note: a Uniform CDF

(3.29)

In the case of N(ls) > 1, let {U1, U2..., UN(ls)} be a sequence of uniformly distributed random

variables and let {U(1), U(2), ..., U(N(ls))} be that sequence ordered i.e. {U(1) < U(2) < ...}. Then the

joint probability of observing some ordered list is given by 3.30. Note that there are Nls factorial

ways to order {U1, U2..., UN(ls)}.

p(U1, ..., UN(ls)) = N(ls)!
[ 1

ls

]N(ls)
(3.30)

Now, I want to show that in the more general setting (N(ls) = n) the positions of elongating

RNAP (Z = {z1, ..., zn}) are uniformly distributed between µ and ls (equation 3.31) which will

justify use of the uniform distribution here on out. In following with the previous notation on order

statistics, let Z = {z(1), z(2), ..., z(n)} be the ordered aligned nascent transcripts and ki be small

enough such that zi−1 + ki < zi for each zi ∈ Z. Note that in this way ki is not the same for all zi

and is itself another random variable!

P (one event in zi and zi + k and no events in [zi − k, zi] given N(ls) = n)

=

n∏
i=1

p(z ∈ [zi, zi + k]|N(ls) = n) ·
n∏
i=1

p(z /∈ [zi − k, zi]|N(ls) = n)

= (αk1)e−αk1 · ... · (αkn)e−αkneα(ls−(k1+...+kn))/(αls)
ne−(αls)/n!

= n![
1

ls
]nk1 · ... · kn

(3.31)

Normalizing by k1, ..., kn and letting ki go to zero completes the proof.

Although I discussed the relationship between Poisson Processes and Uniform distributions

within the context of continuous random variables, these results hold in the case where z is integer
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valued and the waiting or arrival times of the point process are geometrically distributed. Indeed,

the uniform density and mass functions are equivalent.

3.2.4 Mixture Models

Given that I will be discussing mixtures of RNAP dynamics where Z is no longer identically

distributed, I’ll refer to the Loading/Initiation/Paused and Elongating/Termination stages as LI

and ET respectively.

3.2.4.1 K Exponentially Modified Gaussian and Uniform Mixtures

Nascent transcription assays serve as a readout on RNAP dynamics. Like most high through-

put assays, GRO-seq (or PRO-seq) is a population averaged assay, thus providing a histogram

reflecting the distribution of RNAP locations. In this way, however, GRO-seq does not directly

identify whether a read originated from either the LI or ET stage of polymerase activity.

To capture these processes jointly, let k be a multinomial random variable that records a

specific transcriptional component and is selected with probability wk. Thusly, K = {k ∈ N+ : k ≤

M} represents a finite set of M transcriptional components. With this in mind, p(z, s; Θ) represents

a mixture distribution describing an arbitrary number of initiation and elongation components

(equation 3.32, Figure 3.5)

p(z, s; Θ) =
∑
k∈K

wkf(z, s, k; θk) (3.32)

Importantly, f(z, s, k) in equation 3.32 may represent either h(z, s) or u(z, s) (equations 3.10,

3.28 respectively). If KP represents the set of LI components and KE represents the set of ET

components, then ∀ke ∈ KE there exists a kp ∈ KP such that µk lower or upper bounds the support

of ke depending on the strand orientation of ke. In this way, LI and ET components are directly

linked.

Under a finite M-mixture model, I wish to perform model inference over Θ given nascent

transcription data, D where N = |D|. In total, I seek to identify a parameter set Θ∗ under which
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Figure 3.5: Model of polymerase activity. A summary of the probabilistic model (on left,
see text for full description of parameters) with examples of data generated from the model (on
right). Here “Loading” refers to recruitment of polymerase and pre-initiation complex formation,
“Initiation” refers to initiation of transcription and promoter-proximal pausing, and “Elongation”
refers to productive elongation following pause release [59, 1, 98, 76].

D is most probable, L(Θ|D) (equation 3.33), i.e. the maximum likelihood estimate (MLE).

Θ∗ = argmax
Θ

N∏
i=1

∑
k∈K

wkp(gi; θk) (3.33)

Without specifying the set of transcriptional component identifiers (K) associated with D,

equation 3.33 does not emit a closed form solution. Even still, {D,K} does not fully specify µ̂k, λ̂k

or σ̂k as zi equals the sum of two latent random variables: xi (loading position) and yi (initiating

length). However, observing the set of initiating lengths (Y) effectively decouples the convolution

in equation 3.10 allowing for a straightforward computation of the MLE for a Gaussian and an

exponential distribution. Taken together, let the complete data be C = {D,K,Y}. It follows
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easily that L(Θ|C) has a closed form solution given the assumed independence of zi, si, ki, yi.

Although I do not observe K or Y, I can treat ki and yi as random variables and perform

iterative optimization of equation 3.33 by the Expectation Maximization algorithm (EM). The EM

algorithm alternates between two steps: the E-step computes the conditional expectation of latent

variables {ki, yi} given observed variables gi = {zi, si} (equation 3.34) and the M-step performs a

gradient step along this expectation.

E
[

log p(C|θ)|D, θt
]

=

∫
y∈R+

∑
k∈K

N∑
i=1

log p(ki, yi, gi; θ)

N∏
j=1

p(yj , kj |gj ; θt) (3.34)

Admittedly daunting, simplification of equation 3.34 can be achieved in a number of ways.

First, I assume that ki and yi are independent therefore p(yj , kj |gj ; θt) = p(kj |gj ; θt) · p(yj |gj ; θt).

Furthermore, p(yj |gj ; θt) integrates to one across R+ and
∑

k∈K p(k|gj ; θt) sums to one over all k ∈ K

components. Finally, I need not consider p(yi|gi) for mixture components involving elongating

polymerase. Therefore, I can see that the complete data log-likelihood function depends only on

three quantities: yi, y
2
i and ki.

The probability a component k given a data point gi (equation 3.35) follows immediately

from Bayes’ Theorem and for succinctness I define this term as rki . Commonly referred to as the

responsibility term [17], rki measures the extent to which gi belongs to some component k.

rki = p(k|gi; θgk) =
wk · p(gi; θgk)∑
k∈Kwk · p(gi; θ

g
k)

(3.35)

With the necessary conditional expectations defined, I solve for the maximum of equations 3.34
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and 3.25. Equation 3.36 provides the “update rules” for the EM algorithm.

wt+1
k :=

rk
r

πt+1
k :=

∑N
i=1 r

k
i I(si = 1)

rk

µt+1
k :=

1

rk

N∑
i=1

E[X|zi, si; θt]rki

1

λt+1
k

:=
1

rk

N∑
i=1

E[Y |zi, si; θt]rki

σt+1
k :=

1

rk

( N∑
i=1

E[X2|zi, si; θt]rki − 2µk

N∑
i=1

E[X|zi, si; θt]rki
)

+ µ2
k

(3.36)

In keeping with the traditional notation of mixture models in equation 3.36, I define rk =
∑N

i=1 r
k
i

and r =
∑

k∈K rk.

Due to the finite nature of uniform distributions, my EM update rules (equation 3.36) assume

that ls is fixed, presumably to the minimal or maximal order statistics, g0 and gn of D. However,

the length of elongation or exact site of termination varies throughout the genome [42]. In this

way, a fixed ls is an unattractive modeling assumption of RNAP.

To optimize ls requires an adjusted EM algorithm. In brief, I want to preserve the contractive

map property of the EM namely |Θt+1 − Θ∗| ≤ β|Θt − Θ∗| where 0 < β < 1 and Θ∗ refers to a

fixed point of the EM map. Yet, moving ls away from the max and min order statistics will result

in some gi ∈ D having no probability mass (L(Θ)→ 0) or L(Θ) to monotonically decrease.

To estimate for an optimal ls, I place a uniform distribution over D with support between

[a, b] and p(s) = 0.5 for either s = +1 or s = −1. The mixing weight (wk) remains fixed at

min(E/|D|, 1) where E represents the expected number of mapping errors across [a, b]. Under a

binomial error model assumption, E = p|G||b − a|/S where S refers to the length of the genome,

|G| the total number of mapped reads and p represents the probability that a read maps by chance

alone. With this addition, ls is no longer confined to the min and max order statistics of D.

For illustrative purposes, I provided a pseudo-code description of my MLE methodology in the

Appendix (Algorithm B1).
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3.2.4.2 Model Selection

An important limitation of finite mixture models is a-priori knowledge of |Θ|, the number of

transcription components. To perform model selection over potentially many component sizes, I

utilize penalized Bayesian Information Criterion (BIC), equation 3.37.

BIC(Θ,L) = α|Θ| logN − 2 logL (3.37)

L represents the likelihood function evaluated at Θ∗, α is the penalty term, |Θ| is the number of free

parameters within a specific model topology (e.g. one initiation component, one forward strand and

one reverse strand elongation component contains 8 free parameters) and N is the total number of

data points within D. In brief, BIC penalizes model complexity while balancing improvement in

L. Unless otherwise specified, α is set to one for all subsequent analysis.

3.2.4.3 Seeding the EM

Like many gradient based optimization methods, the EM algorithm is subject to local max-

ima across the likelihood landscape. A common approach to handle this issue is to use many

random initializations of Θt=0, yet this approach is inherently time consuming. Seen commonly

with Gaussian mixture models [143], both the EM’s linear rate of convergence and final parameter

quality, L(Θ∗), vary most as a function of µ0
k: the random initialization of the LI component center.

To this end, I propose an approximate windowing method to scan for regions of local likelihood

for an LI component within D. Let D[a,b] = {zi : a ≤ zi ≤ b} be a specific ordered collection of

D. At D[a,b] I compute the ratio of BIC scores of a fully specified single component mixture model

(parameters ΘB) to a uniform distribution with support across [a, b] (equation B.1).

LL(D[a,b]) =
logN[a,b] − 2N[a,b] log(0.5/(b− a))

8α logN[a,b] − 2 logL(ΘB)
(3.38)

It should be noted that the elongation ls components l+, l− are set to b, a respectively. Overlapping

windows of size b−a are merged if LL(.) exceeds 1. Unless otherwise specified, α = 1. These merged

windows are then used for the random initialization µk as they constitute a heuristic estimate to

the expected value of an LI component.
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3.2.5 Bayesian Extensions

Of particular interest might be to incorporate biologically relevant information on µ, λ, π, ~w.

Information like gene annotation location, gene strand information and previous travelers ratio

calculations can all be incorporated in a meaningful way to the model outlined thus far. Here I

show that I can perform maximum a-posteriori inference even in light of non-exponential family

component densities and provide new update rules for Θ given the incorporation of conjugate priors.

It is simple to show that if X and Y are independent, exponential family random variables,

then their product is exponential family. A random variable is exponential family if it can be

rewritten as

h(x) exp
[
ηTT (x)−A(η)

]
(3.39)

where h(x) is the base measure, η(θ) the natural parameter set, A(η) is the log partition function

and ensures that the probability function sums to one and T (x) is the sufficient statistic of the

data. If X and Y are independent than their joint density is an exponential random variable.

p(x, y) =
1√

2πσ2
e−

(x−µ)2

2σ2 λe−λy =
λ√

2πσ2
exp

[
− x2

2σ2
+
µx

σ2
− µ2

2σ2
− λy

]
(3.40)

Thusly,

T (x) =


x

x2

y

 ; η =


µ
σ2

− 1
2σ2

λ

 ;A(η) = − η2
1

4η2
− 1

2
log(−2η2);h(x) =

λ√
2πσ2

(3.41)

When µ, σ2 are unknown for a normal distribution a Normal-Inverse Gamma (m,κ, α, β) distribu-

tion is conjugate. I only have the addition of an extra parameter λ which is completely independent

from the loading event X. A Gamma distribution (τ, υ) is fully conjugate for an exponential random

variable. A Dirichlet distribution is fully conjugate for ~w.

With a simple modification to equation 3.23 I can treat my parameters as random variables

and incorporate p(Θ).

R(Θ,Θg) =

∫
y∈Y

∑
k∈K

N∑
i=1

log p(ki, yi, zi, si|Θ) · p(Θ)

N∏
j=1

p(yj , kj |zj , sj ; Θg) (3.42)
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I note that the E-step remains unchanged, thus I simply modify the M-step to provide my new

updates. Sense the joint log likelihood is exponential family and the probability of loading (X) is

independent of (Y) I can use all, fully conjugate priors.

For the mixing components wk, I use a symmetric Dirichlet prior of the form 1
B(α0)

∏2M
i wα0−1

i

, a beta prior for the strand probability π of the form 1
B(α,β)π

αl.e(1−π)βl,e , a Normal-Inverse Gamma

distribution for the prior on µ, σ2 of the loading event xi,
√
τ

σ
√

2π

βα

Γ(α)
1
σ2

α+1
exp(−2β+τ(µ−m0)2

2σ2 ) and

a simple gamma distribution for the prior on initiating length parameter λ. In this way, it is

relatively straightforward to incorporate stronger priors on the strand and component weights that

may reflect gene annotation.

µk :=
m0τ +

∑
i ri,k E[X|zi, si; θg]
rk + τ

σ2
k :=

∑N
i=1 E[X2|zi, si; θg] · rki − 2µ

∑N
i=1 E[X|zi, si; θg] · rki + µ2rk + 2β + τ(µ−m0)2

α+ 3 + rk

1

λk
:=

∑N
i=1 E[Y |zi, si; θg] · rki + β

rk + α

wk :=
rk + α0

rk +Kα0

πk :=

∑N
i=1 r

k
i · I(si = 1) + αl − 1

rk + αl + βl − 2

(3.43)

3.3 Applications to GRO-seq

3.3.1 Numerical confirmation of model inference by simulation

I have presented a probabilistic generative model of RNAP that provides a straightfor-

ward method to draw a collection of random samples D from p(z, s; Θ). As shown in Figure

3.5, this model governing RNAP location is generative. The two distinct stages of RNAP, Load-

ing/Initiation (LI) and Elongation/Termination (ET), are illustrated by 250 random draws from

p(z, s; Θ). Qualitatively, this simulated data resembles GRO-seq read pile up seen in previous

studies [3, 102, 105, 92].

Using synthetic read data generated from p(z, s; Θ) , I first tested the accuracy and correctness

of my proposed parameter estimation procedure. I drew varying sizes of D from 10 to 500 data
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points at equally spaced intervals of 20. Under each sample size, I collected 25 unique subsets from

p(z, s|Θ) and computed the standard error |Θ − Θ̂|. As shown in Extended Data Figure B.1A, I

observe a significant and fast decrease in standard error as D increases in size.

Lastly, to monitor accuracy in model selection by Bayesian Information Criteria (BIC), I

drew from p(z, s|Θ) under varying levels of model complexity, |K| ∈ {1..20} (Extended Data Figure

B.1B). To quantify variability in accuracy, I drew 25 sets of D from p(g|Θ) where |D| = 100. Under

each set, I computed MLE estimates for every model topology between 1 to 20 and selected the

model with the minimum BIC score. A maximum of 20 is chosen arbitrarily and for computational

convenience. In short, my model selection procedure correlates well with the true |K|.

Figure 3.6: Characteristic loci showing RNAP inference. (A) shows the final inferred
density function at characteristic transcribed and super enhancer regions defined by FStitch [9]
and dbSuper [84] respectively. (B) shows the BIC calculation across 20 mixture models. A model
complexity of 5 is shown to be minimal and thus considered optimal.

To perform model inference of RNAP location requires an interval [a, b] where GRO-seq

read mapping data (D) can be collected. To this end, I utilized Fast Read Stitcher (FStitch)

that implements a maximum entropy Markov model to segment the genome into “transcribed

regions” [11, 9]. In a HCT116 GRO-seq dataset [3], FStitch classified 19,709 transcribed regions.

With these regions in hand, I computed Θ∗ by my MLE methodology across mixtures containing

|K| ∈ {1, 2, ..., 20} for each interval independently and selected a final Θ∗ by the minimum BIC

score.
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Table 3.1: Genome wide summary statistics of inferred Θ̂. Computations of µ − TSS and
ls− 3‘end are specific to transcribed regions overlapping a single isoform gene. ŵp was recomputed
for a 2KB window surrounding µ̂k as |ls − µk| will artificially correlate with wp.

Mean Median Standard Deviation

|Kp| 2.8 2.1 ±1.5

µ− TSS -42 -15 ±120

ls− 3‘end 6325 6194 ±1200

σ 38.84 21.46 ±65.73

λ 170.15 137.57 ±130.15

π 0.51 0.51 ±0.29

wp 0.73 0.79 ±0.13

Figure 3.6A shows a transcribed and super enhancer region with reference to the estimated

density function. As a final illustrative example, Figure 3.6B displays the associated Bayesian

Information Criterion scores as a function of model complexity Supplemental Table B.1 provides a

collection of statistics describing the distribution of fitted parameters across all transcribed regions.

To address the accuracy of my model complexity procedure, I reasoned that at active single

isoform genes should predict only one LI component while at transcriptionally inactive regions (by

FStitch) I should predict no components. Extended Data Figure B.2 highlights the accuracy of

my RNAP inference model to discriminate between active and inactive transcribed regions based

solely on LI component presence (AUC≈ 0.95). At a FDR of 0.05, I observe that the distribution

of |Kp| at single isoform genes contains a clear and prominent mode at |Kp| = 1 (Extended Data

Figure B.2).

The distribution of |Kp| at both single isoform genes and all FStitch-defined transcribed re-

gions is heavy tailed, suggesting an appreciable number of transcribed regions contain more than

one RNAP loading event (Extended Data Figure B.2). To assess whether the model is incorrectly in-

troducing extra LI component centers to compensate for data poorly described by an exponentially

modified Gaussian distribution, I compared the distribution of |µ̂i − µ̂j | (i 6= j) at loci harboring

|Kp| > 1 to the distribution of LI component standard deviation (σ̂ + ˆ1/λ). I observe that median

pairwise LI component center distance far exceeds what I would expect under the variability of LI
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component sizes, indicating that {µ̂1, .., µ̂k} describe independent portions of the data.

Suggested by the associated standard deviations in Supplemental Table B.1, Θ̂ varies from

locus to locus: some genes experience a large degree of initiation (1/λ� 0) or considerable strand

bias π 6= 0.5. Whether this variability relates to experimental noise or actual biological structure,

may be addressed by the reproducibility and consistency of Θ̂ across biological replicates. To this

end, FStitch defined transcribed regions between replicate one and two were merged and model

inference was performed in each replicate independently.

I observe strong correlation in model selection (Extended Data Figure B.4A) and exceedingly

high correlation between identical parameters (e.g. ρ(λrep1, λrep2) = 0.95, Extended Data Figure

B.4B), suggesting that estimated parameters display low variance. Apart from w and ls, I observe

little to no correlation between differing parameters (e.g. λrep1 and πrep2, Extended Data Figure

B.4C), suggesting that there is no confounding dependencies between parameters.

Figure 3.7: Changes in promoter proximal pausing are correctly identified by a gener-
ative model of RNAP. Mixture model inference was performed over RefSeq gene annotations
between control and treated cell lines in two independently derived datasets: Laitem 2015 and Liu
2013. (A) shows the predicted difference in LI mixing weights between control and treated cells.
Under a normal assumption, mean mixing weights were compared using a t-test. (B) shows the
distribution of LI length (blue box) with the traditional computation of the pausing ratio as a
function of window size plotted for the control (purple line) and treated (red line) cell lines of the
Laitem 2015 dataset. Grey shading indicates one tenth of one standard deviation.

Estimates of wp sufficiently larger than the population average (two standard deviations,
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Supplemental Table B.1) are significantly lacking in an overlapping transcription start site (p-

value numerically indistinguishable from zero, Hypergeometric test). Intuitively, this is expected

as transcription over enhancer regions or non-coding regulatory loci do not harbor downstream

gene bodies. I observed that the loading strand bias (π) tracks closely with the strand orientation

of the underlying RefSeq gene (Extended Data Figure B.5A). Particularly, π̄ � 0.5 and π̄ � 0.5

for forward and reverse strand gene annotations respectively. Loading events lacking an annotated

TSS display no appreciable strand bias, π̄ ≈ 0.5.

Given my model predicts µ as the site of RNAP loading and ls as the site of elongating

termination, I compared the location of µ and ls to estimates of annotated transcriptional start

sites (TSS) and termination sites respectively. I observed a high degree of correlation between µ and

the TSS, noting a significant ≈ 40 base pair upstream displacement of µ from the TSS (Extended

Data Figure B.5B). This displacement is in line with estimates from other groups using independent

methods [76]. Similar to previous estimates of transcription termination [55, 9], I observed ls to be

≈ 6KB downstream the polyadenylation site (Extended Data Figure B.5C).

3.3.2 Predicting enzymatic changes of RNAP following Experimental Perturbation

Of significant importance to transcriptional studies is to monitor changes in RNAP activity

following experimental perturbation. Specifically, the transition between promoter-proximal paus-

ing into the subsequent RNAP elongation constitutes a highly regulated process of tremendous

interest [1]. A popular metric to quantify changes in RNAP pausing, the “pausing ratio” computes

mapped reads under some TSS-centered window divided by mapped reads under some gene body-

centered window. Given that my model directly infers LI and ET RNAP stages from data alone, I

ask whether I can correctly identify changes in RNAP activity following experimental perturbation

known to affect promoter proximal pausing.

I reanalyzed data from two studies that utilized GRO-seq to probe RNAP pausing activity.

Specifically, one study knocked down bromodomain-containing protein 4 (Brd4) in HEK293 cells

and observed global changes in RNAP pausing ratios suggesting a critical role in RNAP pause
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release [105]. Yet another study noted global shifts in RNAP pausing ratios by cyclin-dependent

kinase (CDK) 9 inhibition in HeLa cells [92]. With these datasets, I hypothesis that my model

should accurately reproduce the observed changes in pausing ratios by appropriate changes in the

LI and ET mixing weights.

For each dataset, I performed model estimation and computed changes in estimated param-

eters between the untreated and treated cells. Specifically, I fit a single component mixture model

(one LI component and two ET components) at each gene annotation region. I then compared

pairwise fold change in LI component mixing weights first between untreated biological replicates

and then between untreated and treated experiments. In both studies, I observed highly significant

global changes in LI component mixing weights relative to untreated replicates (Figure 3.7A).

Although easily computable, the standard pausing ratio calculations rely on ad hoc methods

of window sizes and distance thresholds [1]. To highlight this point explicitly, I examined the impact

of TSS-centered window size on the pausing ratio (Figure 3.7B). Intuitively, window sizes that are

either too small or too large dramatically reduce the observable differences between treated and

untreated cells. For comparison, I provide the distribution of LI standard deviation obtained from

my model.

3.3.3 RNAP model accurately predicts marks of regulatory elements

Beyond annotated genes, it is well known that key chromatin marks are associated with

transcription in different parts of the genome [163, 164]. Moderate levels of H3K4me1/2 and high

levels of H3K27ac mark active enhancers whereas high levels of H3K4me3 and H3K27ac mark

areas of active promoters. Recent studies show that these marks harbor transcription [102] and

show a characteristic “bidirectional” signature, where forward and reverse strand read coverage

appear positively and negatively skewed respectively. To study the interplay between enhancer

transcription and chromatin landscape requires the development of models to accurately identify

bidirectional transcripts. Although my model of RNAP does not implicitly assume LI components

to appear bidirectional, certain parameter combinations (e.g. π ≈ 0.5 and 1/λ� 0) will show both
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Figure 3.8: RNAP model accurately profiles for bidirectional transcription. (A) A receiver
operating characteristic (ROC) curve displaying the relationship between true and false positive
rates of H3K27ac prediction from bidirectional transcription alone. The area under the ROC curve
(AUC) values are summarized for multiple marks. As a Venn diagram, (B) shows the overlap in
bidirectional transcription classifications between dREG and Tfit at false discovery rate of 0.05
relative to the H3K27ac prediction.

positive and negative skew emanating from µ. To profile for bidirectional transcripts genome wide,

I hereafter utilized my EM seeding method (complete description in Supplement; ΘB set to the

parameter values in Supplemental Table B.1).

To asses the accuracy of my bidirectional transcript classifications, I monitored how well a

regulatory mark (DNase I HS, H3K27ac, H3K4me1/3) may be predicted from bidirectional tran-

scription alone. With an HCT116 GRO-seq dataset [3], I benchmarked my method against the

current state-of-the-art bidirectional detection algorithm, dREG [38]. The BIC penalty α (Tfit)

and support vector regression score (dREG) was varied. True positives were considered as an overlap

with chromatin mark peaks (HCT116 [164], MACS broad peak settings) and the resulting bidirec-

tional transcript prediction. To assess false positives, I randomly selected an equivalent number of

2KB loci that do not overlap MACS peak calls. Thus, a false positive is a bidirectional prediction
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overlapping a negative example. I observed improvements over dREG across all regulatory marks

(Figure 3.8A-B). Both dREG and Tfit predict H3K27ac marks exceedingly well from bidirectional

transcript presence alone suggesting that H3K27ac signal reflects nascent transcription.

Figure 3.9: CTCF paired loci network displays assortativity by bidirectional presence
(A) displays two characteristic connected components on chromosome 1 and 2 from a CTCF ChIA-
PET dataset derived from the K562 cell line. Nodes are colored as to whether a Tfit prediction
overlaps a paired loci by one base pair or not; Bidir. and ∼Bidir. respectively . The circumference
of the node is proportional to the degree. (B) shows the proportion of edges containing a similar
label, significance is calculated by a Binomial test. (C) shows the distribution of the assortativity
coefficient across all connected components, > 0 indicates modularity.

3.3.4 Three dimensionally paired loci display centrality and associativity based

on bidirectional transcription

The role of transcription at enhancer elements (defined commonly as non-TSS associated

H3K27ac presence) remains an open and exciting question. Correlation in both transcript levels

and three dimensional proximity of enhancer elements and target genes [97, 3, 11] point prominently

to the functional importance of enhancer transcripts. To begin to address the question of enhancer

RNA function, I present an analysis that demonstrates both the utility of my predicted RNAP

loading events and the intriguing relationship between chromatin interaction datasets and nascent

transcription assays.

Given that the insulator protein CTCF has been implicated as a key player in enhancer to gene

looping events [154, 135], I examined the loci-loci pair interaction network defined by Chromatin

Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) for CTCF derived from the K562

cell line [164]. With a cell line matched GRO-seq dataset [34], I compared network attributes
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of loci containing or lacking bidirectional transcript predictions (γ = 1, FDR=0.05 according to

H3K27ac prediction). Figure 3.9A displays two illustrative connected component examples, built

as described in the Supplement.

Enhancers are implicated in defining key cellular phenotypes such as cell fate [37, 176] and

tumorigenesis [137, 72] and thus may play a central role in three dimensional looping. my con-

structed network reflects locations in the genome (nodes) connected by the CTCF ChIA-PET data.

With this in mind, I grouped nodes by whether they lacked or contained an association with an

annotated TSS or Tfit prediction and computed common measures of node centrality. I observed

the highest degree of node centrality at non TSS associated bidirectional transcripts across all cri-

teria (Supplemental Table S2). This result suggests that enhancer RNAs play a central role in the

3D configuration of the genome.

With the advent of chromosome conformation capture technology, extensive chromosomal

looping has been observed at so called transcription factories [41]. These discrete nuclear sites of

transcription allow for rapid expression of many three dimensionally proximal genes [50]. To this

end, I investigated evidence of modularity or network homophily based on lacking or containing

bidirectional transcript presence. Indeed, the proportion of edges linking bidirectionally transcribed

nodes is much higher than by chance alone (Figure 3.9B). Furthermore, computation of network

modularity (a measure of network label clustering) shows weak assortativity across most connected

components (Figure 3.9C).

Discussion

I described a probabilistic, generative mixture model that is founded on a biologically mo-

tivated description of RNAP behavior. This model is inspired by the current understanding of

polymerase behavior [59, 91, 98, 34] at protein coding genes and provides a principled mathe-

matical approach to GRO-seq data analysis. To perform model inference, I derived a parameter

estimation scheme based on the theory of maximum likelihood and the Expectation Maximiza-

tion algorithm. When applied to GRO-seq, position of RNAP loading (µ) corresponded well with
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previous genomic annotations such as marks of active chromatin (H3K27ac and DHS1) as well as

transcription start sites (RefSeq gene promoters). Taken together, this model of RNAP polymerase

appears as a parsimonious explanation of GRO-seq read coverage.

Although strongly enriched for RefSeq promoter annotations, the majority of model pre-

dictions arose at sites laking a gene transcription start site. The functional role of eRNAs, and

even their presence alone, remains an interesting and open question. Apart from a strand bias

(π), θ̂ was not drastically altered between promoter or enhancer loci suggesting little difference in

transcriptional dynamics. In some ways, this data suggests that the only difference between an

enhancer and a promoter is a downstream gene body. Chapter 4 examines eRNA presence by this

model across more varied datasets, revealing patterns of eRNA localization driven by cell type,

drug perturbation and TF-activity.

I also showed that pausing probabilities or the proportion of elongation to initiation signal

(~w) correlated well with experiments directly probing RNAP pausing on a global scale. Challenged

by both the multiple levels of model latency, I was unable to asses significant changes in Θ on per

gene basis between two different conditions. Given that ~w and π represent a proportion it might

be possible to apply Fischer’s exact test or a contingency χ2 table model. However hypothesis

testing involving µ, σ, λ requires a fundamentally different approach as these parameters are directly

affected by the convolution of the exponentially-modified Gaussian distribution.

Moreover, it is very likely that gene body transcription is not well approximated by a uniform

distribution which assumes a homogenous, stationary poisson point process over RNAP location.

In fact, qualitative inspection reveals ebbs and flows in the GRO-seq read coverage signal over

gene bodies indicating, possibly, local RNAP pausing in elongation. It would be very interesting

to investigate models more commonly used in transportation sciences (car-traffic-jam models) to

investigate any evidence of RNAP elongation pausing.

Although model selection by bayesian information criteria (BIC) appeared accurate at single

isoform genes, the extent to which this model selection procedure can be assumed at enhancer loci

needs to be investigated. Even so, model selection by this method is deeply limited by computational
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time (iterating from 1 − 20 models is CPU intensive). Bayesian non-parametric methods, like an

infinite mixture model, would be a natural extension to this work and require little to no re-tooling

of the model.

In summary, with the advent of high throughput sequencing transcriptional assays like GRO-

seq, RNAP is now being studied in increasingly exciting and precise ways. One of the key goals

of this mixture model was to provide a set of biologically interpretable parameters that capture

alterations in polymerase behavior induced by changes in regulatory proteins. I believe this mixture

model is one of the first steps in building a comprehensive predictive model of RNAP.



Chapter 4

eRNA Profiles Predict Transcription Factor Activity

Portions of this chapter are adapted from

J. Azofeifa, M. Allen, J. Hendrix, T. Read, J. Rubin and R. Dowell (2016) eRNA
Profiling Predicts Transcription Factor Activity Nature 2017 (in review)

4.1 Introduction

To ultimately understand the contextual and functional consequences of eRNA presence,

this chapter investigates heavily the epigenetic and transcription factor (TF)-binding flanking or

localized precisely with Tfit-predicted sites of RNAP loading (µ̂). TFs function as major determi-

nants of cell state[160, 140]. Despite their critical importance for controlling cellular phenotypes,

no reliable method for ascertaining TF activity exists to date. Chromatin immunoprecipitation

(ChIP-seq) studies have identified binding sites for many of the approximately 1,400 transcrip-

tion factors encoded within the human genome[171], allowing estimation of a consensus DNA-

binding motif for more than 600 factors[89]. However, studies comparing TF-binding events to

RNA expression levels have revealed that many TF-binding sites have no apparent effect on nearby

transcription[103, 53, 141]. Distinguishing such “silent” TF-binding events from those with regu-

latory capacity is a fundamental challenge.

Given that eRNAs are most readily detected in Global Run-on following by sequencing (GRO-

seq), chapters 2 & 3 developed predictive models of both GRO-seq read coverage and RNA Poly-

merase II dynamics to first discover eRNAs genome-wide. With these models in hand, we are now
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prepared to predict eRNAs across a variety of tissue types and following experimental perturbation.

By placing eRNAs in the context of extremely stratified sources of data (771 nascent transcript

datasets), I will be able to make more fundamental claims as to the precise spatial and temporal

relationship governing eRNA presence and absence.

4.2 Enhancer RNAs originate from transcription factor binding sites

In order to profile enhancer transcription genome-wide, I identified 39,633 putative sites of

bidirectional transcription in a K562 GRO-cap dataset,[34] of which 30,324 were not associated

with an annotated promoter (Figure 4.1, Extended Data Figure C.1 & C.2).

Figure 4.1: eRNA Origins An example locus displaying nascent transcript sequencing read cover-
age (HCT116 GRO-seq[3]) with the overlain density estimation via Tfit and the associated eRNA
origin predictions (green dots).

As previously observed[38, 9], DNase I hypersensitivity (DHS), histone 3 lysine 27 acetylation

(H3K27ac), and histone 3 lysine 4 mono-, di-& tri-methylation significantly associate with non-

promoter bidirectional transcription (Extended Data Fig. C.3). Indeed, histone modifications are
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displaced from bidirectional centers supporting the presence of a nucleosome-free region localized

precisely at the origins of bidirectional transcript initiation (Figure 4.2). Given their overwhelming

co-occurrence with marks of active and open chromatin, as well as their distal location relative to

annotated promoters, I refer to these transcripts as enhancer RNAs (eRNAs).

Figure 4.2: Marks of Active Chromatin associate with eRNA Origins Genome-wide meta-
signal for marks of active chromatin aligned to eRNA origins inferred by Tfit in a K562 GRO-cap
dataset[34](marks in Supplementary Table C.1).

Links between the location of eRNA transcription and specific TF-binding sites (e.g. p53,

TNFα, ESR1) have been observed under a variety of experimental and cellular contexts[3, 106, 35].

To assess eRNA and TF-binding co-occurrence in a more systematic fashion, I integrated our set of

eRNA origins with the genomic binding locations of 139 proteins profiled by ChIP-seq, also in K562
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cells (Supplementary Table C.1). Consistent with previous results[38], 98% of eRNAs are bound

by at least one regulator, where an average of 52.9 regulators localize at any one eRNA (Extended

Data Fig. C.4A-B). In fact, I observed three distinct patterns of TF binding (Figure 4.3A): TFs

that bind all eRNAs (32 factors co-occur with over 75% of all eRNAs; clade IV)); TFs that bind

only a few eRNAs (39 factors associate with no more than 20% of all eRNAs; clades I & II); and

TFs that bind to many eRNAs but only with unique TF partners (58 factors occur under specific

combinatorial patterning, e.g. GATA2/NR2F2/GABPA and FOSL/ATF3 strongly co-localize at

eRNAs; clades III & V). In summary, unique sets of TFs bind to specific eRNA origins.

For the set of eRNA origins that overlap TF-binding sites, I next examined the co-localization

of TFs relative to eRNA origins (Figure 4.3B). I observed two classes of regulators: 84% of TFs

exhibit centered, unimodal localization with eRNA origins and 16% display significantly displaced

peak localization flanking eRNA origins (Supplementary Note C.5, Extended Data Fig. C.4C). For

example, factors such as RBB5, PHF8 and CDH1 are significantly displaced an average of 150,

200, and 398 base pairs away from the eRNA origin, respectively (Extended Data Fig. C.4D).

Regulators with displaced peak localization are significantly enriched for ontological definitions

such as “histone modification,” “chromatin organization,” and “histone deacetylation” consistent

with the bimodal distribution of histone modifications observed in Figure 4.2 (p-value < 10−6).

In addition to chromatin state, TF-combinatorial control also plays a pivotal role in down-

stream gene regulation[18]. In general, the number of TFs co-localized at sites of open chromatin is

larger when an eRNA is present than not (Figure 4.4A). Furthermore, TF co-association dramat-

ically increases when considering eRNA presence (Figure 4.4B). Taken together, the localization

of diverse binding complexes at eRNA-associated TF-binding sites suggests that eRNAs may be

markers of functional transcription factor binding.

4.3 Enhancer RNA origins mark sites of regulatory TF binding

Although the vast majority of eRNA origins localize with TF-binding, only a fraction of

TF-binding sites overlap eRNA origins (Figure 4.5A). Similarly, only a fraction of TF-binding
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Figure 4.3: eRNAs originate from sites of TF-binding (A) The overlap of eRNA origins
(columns) with 139 regulatory proteins (rows) (Tfs in Supplementary Table C.1). A blue tick
indicates the presence of TF-binding site within 1.5 KB of the Tfit inferred origin; sorted by
hierarchical clustering. (B) Histogram of the spatial displacement of the TF-binding peak from
eRNA origins (heat is normalized to min/max of the histogram).

sites result in a concomitant change in nearby gene expression[147]. Given the strong relationship

between active chromatin and eRNA transcription, I asked whether eRNAs discriminate “silent”

from “active” TF-binding. In support of this hypothesis, TF-binding sites occurring at sites of

eRNA origination display a significantly increased overlap with canonical marks of active chromatin

relative to non-eRNA associated TF binding (Figure 4.5B). Moreover, no statistical difference is
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Figure 4.4: eRNAs originate from sites of TF-binding (A) The overlap of eRNA origins
(columns) with 139 regulatory proteins (rows) (Tfs in Supplementary Table C.1). A blue tick
indicates the presence of TF-binding site within 1.5 KB of the Tfit inferred origin; sorted by
hierarchical clustering. (B) Histogram of the spatial displacement of the TF-binding peak from
eRNA origins (heat is normalized to min/max of the histogram).

detected between these categories for repressive chromatin marks.

Figure 4.5: TF-binding displays spectrum of eRNA association (A) The y-axis indicates
the proportion of a TFs ChIP peaks associated < 1.5KB with an eRNA origin. The x-axis is one of
the 129 TFs profiled by ENCODE in K562 cells. (B) TF-binding peaks (Supplementary Table ??)
were grouped according to eRNA association. A box-and-whiskers displays the median/variability
in proportion of histone mark association between the groups across all TFs (Supplementary Table
C.1). Asterisks indicate a p-value < 10−10 by z-test. All data in A-B are K562 cells.

Although regulatory TF binding is often enriched for open and active chromatin, functional
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TF binding must ultimately lead to a change in gene expression. To this end, I considered TF-

binding events conserved between two cell types but differing in terms of eRNA presence with the

hypothesis that neighboring gene expression would be elevated in the eRNA-harboring cell type

(Figure 4.6A). There are 95 TFs profiled in at least 2 cell types for which cell type-matched nascent

transcription is available (Supplementary Table C.2). For example, binding of the transcription

factor NR2F2 was profiled in both K562 and MCF7 cell lines, yielding 30,618 and 16,678 binding

peaks respectively, with 3,491 peaks shared between the two cell types (Figure 4.6B). Of these cell

type invariant peaks, 25% harbor an eRNA origin in both cell types, 7% only in K562, 12% only in

MCF7 and 56% do not harbor an eRNA origin in either cell type. Measuring the transcription level

of nearby target genes (TF-binding site < 10 KB of gene promoter) revealed that eRNA presence

is significantly correlated with elevated local gene expression (p-value < 10−6). After making a

total of 263 possible pairwise cell type comparisons (96 TF, 5 cell types), I noted that 73% of these

comparisons display such dynamics (Figure 4.6C, Extended Data Fig. C.5).

4.4 eRNA origins co-localize with TF-binding motifs

Given that many TFs bind DNA in a sequence specific manner, I next sought to determine

the precise spatial relationship between TF-binding motifs and eRNA expression. To this end, I

examined a K562 GRO-cap dataset and measured the distance of TF motifs to eRNA origins. I

observed a stark co-localization of the motif with the eRNA origin specifically in the TF-bound

fraction of eRNAs (Extended Data Fig. C.6A), suggesting that the motif is present at the precise

point of eRNA origination. This led to the speculation that the genome-wide patterns of motif to

eRNA co-occurrence could identify the set of active transcription factors directly regulating eRNA

transcription, even when ChIP data is not available.

To investigate this hypothesis systematically requires a measurement of motif-eRNA co-

localization. With this in mind, I devised a simple statistic—the Motif Displacement score (MD-

score)—which computes the proportion of TF sequence motifs within an h−radius of eRNA origins

relative to a larger local H-radius (Supplementary Note C.7.1). Consistent with the average length
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Figure 4.6: eRNA presence marks the active subset of TF-binding (A) Pairwise cell-type
associated TF-binding peaks were grouped according to eRNA presence from matched cell types
(Supplementary Table C.2). A gene was considered “neighboring” by a distance less than 10
KB. (B) Log base 10 FPKM fold change of “neighboring” genes related to eRNA-grouped NR2F2
binding peaks. (C) Histogram of Log base 10 FPKM fold change of “neighboring” genes for all
possible eRNA-grouped TF ChIP-seq datasets (n=255).

of a nucleosome free region[177], I set the h−radius based on the average estimated distance between

the forward and reverse strand transcript peaks at eRNA origins (h =150bp, H =1500bp; Extended

Data Fig. C.6B). Consistent with our previous qualitative analysis, the MD-score is elevated in the

bound set of eRNAs relative to the not bound set (Extended Data Fig. C.6C).

In order to expand our approach to include TFs for which no ChIP-seq is available, I lever-

aged a hand-curated database of TF-binding motif models (HOCOMOCO[89]) and measured the
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Figure 4.7: TF-binding motifs localize at sites of eRNA transcription (A) Each row is a
TF motif model and each column is a bin of a histogram (100) where heat is proportional to the
frequency of identify a motif at that distance from an eRNA origin. (B) A comparison between
the expected MD-score for a motif model (x-axis) and the observed MD-score in a K562 GRO-
cap experiment[34]. Red and green dots indicate a p-value < 10−6 above or below expectation
hypothesis tests, respectively.

distribution of 641 possible motif sequences proximal to K562 eRNA origins (Figure 4.7A). Under a

uniform nucleotide background model, 32% of the motif models co-localize significantly with eRNAs

(p-value < 10−6; Supplementary Note C.7.2). However, similar to gene promoters and TF-binding

motifs, eRNAs (e.g. enhancers) exhibit heightened GC content, which may artificially induce GC-

rich motif presence at eRNA origins (Extended Data Fig. C.7A). To control for local sequence bias

in our co-localization metric, I developed a simulation based method to perform empirical hypoth-

esis testing of the MD-score (Extended Data Fig. C.7B, Supplementary Note C.7.3). I observed

that —even in light of a significant nucleotide bias— 27% of motif models remain significantly

co-localized with eRNA origins (Figure 4.7B).
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Figure 4.8: MD-scores are variable across nascent transcript datasets (A) MD-scores were
computed and ranked under 6 nascent transcript datasets. (B) Each row corresponds to a nascent
dataset and each column relates to motif frequency. These are shown for two demonstrative exam-
ples and the associated MD-scores, sorted by publication.

To determine whether this significant co-localization was an artifact of a single experiment,

I examined MD-scores of all motif models across a set of nascent transcript datasets from six

unique cell types. Our analysis revealed wide fluctuations in eRNA and motif co-localization across

experiments (Figure 4.8A). Furthermore, I observed that the MD-score associated with cell type

specific TF motifs are elevated in their known lineage of activity. For example, NANOG is elevated

in embryonic stem cells consistent with its role in maintaining pluripotency[119]. Additionally,

GATA1 is elevated in K562 cells consistent with its role in leukemia[150]. When I predicted eRNA

origins in all publicly available nascent transcription datasets to date (67 publications, 34 cell types

& 205 treatments), I uncovered that the spatial relationship between eRNA transcription and motif

location is exceedingly dynamic (Extended Data Fig. C.8) as exemplified by the JUND and CLOCK

motif models (Figure 4.8B). Overall, 78% of motif models in HOCOMOCO are significantly co-

localized with eRNA origins in at least one dataset. Taken together, these results imply that these

MD-score fluctuations reflect changes in transcription factor activity.
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4.5 Motif displacement scores quantify TF activity

To investigate whether MD-score changes reflect alterations in TF activity, I turned to ex-

periments where the activity of individual TFs is perturbed. In previous work, Dr. Mary Allen

utilized the drug Nutlin-3a to activate p53 in HCT116 cells[3]. Here I observed a significant increase

in the co-localization of the p53 sequence motif and eRNA origins following Nutlin-3a treatment

(∆MD-score 0.17, p-value< 10−33). In fact, of the 641 available TF-motif models, only p53 and

p63, which have nearly identical motifs, display altered MD-scores following Nutlin-3a treatment

(p-value < 10−6, Figure 4.9A). As expected, differential MD-score analysis between biological

replicates revealed no significant shifts in motif to eRNA co-localization, indicating that our false

discovery rate is low (Extended Data Fig. C.9A).

A number of other studies have specifically activated TFs: TNFα activates NFκB[106],

estradiol activates ESR1[67]. Even in light of distinct nascent transcription protocols, I observed

dramatic shifts in the MD-score for the transcription factor(s) known to be activated by each

stimulus (Figure 4.9B,C). As before, differential MD-score analysis between biological replicates

revealed no significant shifts in motif-eRNA co-localization (Extended Data Fig. C.9B,C). Despite

that fact that treatments involving Nutlin-3a, TNFα, and estradiol are known to modulate gene

expression[3, 67, 106], I observed no detectable differences in MD-scores when considering only

promoter-associated bidirectional transcript sites (Extended Data Fig. C.10). In all three cases

(Figure 4.9A-C), TF activation resulted in the production of new eRNAs that are uniquely enriched

for the relevant motif, effectively elevating the TF’s MD-score (Extended Data Fig. C.11).

In each case, nascent transcription was assessed at short time points (45 minutes or 1 hour).

Therefore, I next sought to determine whether MD-scores could capture transcription factor activity

across broader time frames. First, I observed that changes in TF activity are rapid, as exemplified

by flavopiridol (a CDK9 inhibitor) treated mouse embryonic cells[92] which display a dramatic and

monotonic increase in the MD-score of p53 and E4F1 (Figure 4.10A). For a number of TFs, MD-

scores trend upward at 12.5 minutes and show significant changes within 25 minutes of exposure.
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Figure 4.9: Motif displacement scores predict TF activity following short treatment time
points (A) Top: The motif displacement distribution, MD-score and the number of motifs within
1.5 KB of any eRNA origin before and after stimulation with Nutlin3 on P53[3], the transcription
factor known to be activated. Bottom: For all motif models (each dot), the change in MD-score
following perturbation (y-axis) relative to the number of motifs within 1.5 KB of any eRNA origin
(x-axis). Red points indicate significantly increased and/or decreased MD-scores, respectively (p-
value < 10−6). Similar analysis for (B) TNFα activation of NFκB[106] and (C) Estradiol activation
of estrogen receptor (ESR1)[66, 67].

A longer time course, a Kdo2-lipid A (a highly specific TLR4 agonist) treated mouse T-cells[79],

shows dynamic and time-ordered shifts in MD-scores for a number of key transcription factors

(Figure 4.10B), including interferon (IRF7) and STAT2. Collectively, these results indicate that

profiles of eRNA transcription—when combined with motif models—identifies shifts in TF activity

in response to perturbation.

4.6 MD-scores predict TF activity across cell types

Stimulus responsive TF activity is detectable by motif displacement over eRNA origins, but

transcription factors also play a pivotal role in cell fate and identity[119]. With this in mind, I

examined a differentiation time series where human embryonic stem cells were differentiated into

pancreatic tissue[174]. In this scenario, I observed a substantial decrease in MD-score for OCT4,

SOX2, PO52 and NANOG immediately following differentiation to endoderm, concordant with
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Figure 4.10: Motif displacement scores predict TF activity across long time series (A) A
time series dataset following treatment with Flavopiridol. The y-axis indicates the MD-score change
relative to time point 0. Blue dots indicate a MD-score difference < 10−6. A darker shaded line
indicates a time trajectory with at least one significant MD-score. (B) Time series dataset following
treatment with Kdo2-lipid A (KLA) where each time point is normalized to time-matched DMSO.
Therefore, the y-axis indicates MD-score difference relative to the time point matched DMSO
sample. GEO SRR numbers of these comparisons are outlined in Supplementary Table C.3.

their role as embryonic stem cell markers (Figure 4.11A). Furthermore I observe RFX4, which has

the same motif as the pancreatic islet specific RFX6[2], is elevated late in the time series.

I next sought to determine whether differential MD-scores could be utilized to identify, with-

out prior knowledge, the key TFs that define distinct cell types. Consistent with this goal, an

examination of eRNA/motif co-localization between two different cell types—GM1278 (Myeloid)

and K562 (Leukemia) cell lines— resulted in higher activity of the GATA family of transcription

factors in leukemia (K562) cells, whereas the interferon-regulatory family of TFs were more active

in Myeloid (GM1278) cells (Figure 4.11B). When comparing more closely related cells, specifically

fetal-lung tissue (IMR90) and lung carcinoma (A549), I noted a strong increase in the transcrip-

tion factors related to the BACH1/MAFK pathway in the lung carcinoma samples (Figure 4.11C).

While these TFs show altered activity between the cell types, they are not necessarily cell type



87

Figure 4.11: Motif displacement scores predict TF activity across long time series (A) A
time series dataset following treatment with Flavopiridol. The y-axis indicates the MD-score change
relative to time point 0. Blue dots indicate a MD-score difference < 10−6. A darker shaded line
indicates a time trajectory with at least one significant MD-score. (B) Time series dataset following
treatment with Kdo2-lipid A (KLA) where each time point is normalized to time-matched DMSO.
Therefore, the y-axis indicates MD-score difference relative to the time point matched DMSO
sample. GEO SRR numbers of these comparisons are outlined in Supplementary Table C.3.

specific TFs, reflecting a limitation of the pairwise comparison.

Figure 4.12: Motif displacement scores predict TF activity across long time series (A) A
time series dataset following treatment with Flavopiridol. The y-axis indicates the MD-score change
relative to time point 0. Blue dots indicate a MD-score difference < 10−6. A darker shaded line
indicates a time trajectory with at least one significant MD-score. (B) Time series dataset following
treatment with Kdo2-lipid A (KLA) where each time point is normalized to time-matched DMSO.
Therefore, the y-axis indicates MD-score difference relative to the time point matched DMSO
sample. GEO SRR numbers of these comparisons are outlined in Supplementary Table C.3.
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To move beyond isolated pairwise comparisons, I asked for significantly altered MD-scores

between all possible human, untreated dataset pairs (124,251 pairwise comparisons, Extended Data

Fig.C.12). Cell type-matched datasets revealed lower numbers of significantly altered MD-scores

than cell type-differing comparisons suggesting a cell type effect on motif/eRNA association (Ex-

tended Data Fig. C.13). Indeed, the SOX2 motif model, a well established cell type-specific TF,

differentially co-occur with eRNAs in 7,554 comparisons, 99.8% of which are embryonic stem cells

(Figure 4.12). Following in suit, motif models for IRF2, STAT1 and PROX1 appear significantly

enriched in Myeloid, Leukemia and Kidney cells.

Finally, I identified cell type-specific TF activity across all tissue types for which nascent

transcription data is available. Examination of the co-association network reveals many well-

documented links between cell type and TF activity (e.g. Retinoic Acid Receptors & Cervical

cancer). Even still, this analysis uncovered dozens of previously unknown cell type-unique tran-

scription factors whose mechanistic contribution to cellular identity has yet to be investigated (e.g.

Supplementary Table C.4). In addition to cell type-unique associations, this analysis also reveals

inter-cell type relationships: MCF7 breast cancer and embryonic stem cells share activity of COT

and SMAD family TFs consistent with recent evidence linking stem cell like behavior to breast

cancer[51]. As the diversity and quantity of nascent transcription data increases, eRNA profiling

will precisely define the biological systems where individual TFs exert their regulatory influence.

4.7 Conclusion

By an overwhelming support of TF-binding events, enrichment of DNA motifs and changes

in nearby gene expression, this chapter strongly suggests that TFs regulate eRNA transcription.

Although an important step in understanding the basic biology of eRNAs, this chapter raised the

important claim that eRNA predictions—in conjunction with TF/DNA-binding motifs— can infer

TF-activity for over 641 transcription factors within a single experiment. Although functional

experiments are needed to fully justify this result, there is little doubt that eRNAs represent a new

and exciting read out on TF-activity.
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An extraordinarily simple statistic, the motif displacement (MD) score predicted alterations

in TF-activity that matched both the underlying drug treatment and cell type. Even so, the

MD-score makes assumptions that should be relaxed in future modeling efforts. To measure co-

occurrence between TF-binding motifs and locations of eRNA transcription, I choose two param-

eters h,H to compute local enrichment of TF-binding motifs near eRNA origins. Although h was

estimated from the average distribution of the RNAP footprint, it is very likely that h should be

adapted for each motif model independently. Yet more so, bimodal motif displacement distributions

would not be captured well by this method. Other measures of one-dimensional co-occurrence that

do not require h or H—like nearest neighbor—might also be investigated, although they will likely

provide wildly different motif displacement distributions and statistics.

Apart from MD-score heuristics, the MD-score required genome-wide profiles of eRNA pres-

ence to make statements about TF-activity. However, transcription factors bind hundreds to thou-

sands of separate and individual genomic loci. An interesting challenge might be to assign, for each

eRNA, the TF (or set of TFs) that uniquely regulate its expression. In this way, it is likely this

model will be hierarchical: first, we would wish to claim that the TF is active in a given experiment

(so to regulate any eRNA) and then, predict the set of eRNAs that the TF regulates. With eRNA

and motif information alone, this proposal might pose a significant challenge as upwards of ≈40

TFs bind anyone eRNA.

Indeed, the MD-score measures the activity of a single TF however transcription factors

are well known to bind DNA in a combinatorial and context-dependent manner. Future efforts

might monitor patterns of TF-binding motifs over eRNAs to build a network of TF co-association

conditioned on eRNA presence. Moreover, simple pairwise correlations of MD-scores across nascent

transcription datasets might reveal novel co-regulated transcription factors. In either of these

analysis however, similarity in the position specific scoring matrix must certainly be take into

account as similar PSSMs will likely map to similar genomic positions by chance thereby artificially

inflating correlation scores.

Looking ahead, this chapter’s observation that eRNAs predict modulations in TF-activity
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may have important implications in understanding the phenotypic consequences of non-coding

regulatory mutations. Possibly, mutations over TF-binding motifs at eRNA origins may render

transcription factor binding—and subsequent enhancer activity—obsolete, leading to alterations in

important gene expression programs. An integrative analysis of disease-associated genotypes with

sites of eRNA transcription may shed light on the complex problem of non-coding genomic variants.



Chapter 5

Looking Forward

Fundamentally, this thesis addressed the question: what regulates eRNA transcription? To

answer, I developed novel probabilistic models of both GRO-seq read coverage and RNA Polymerase

II dynamics to predict the precise locations of eRNA transcription genome-wide (chapters 2 & 3).

With these predictions in hand, chapter 4 demonstrated that eRNA profiles represent a powerful

readout on the dynamics and changes in TF activity. Although we have learned a lot through

nascent transcriptional datasets, these modeling efforts open more questions than they answer.

This final chapter will outline some of these questions in areas related to model improvements,

data type inclusion and analysis ideas that may continue to shed light on the fascinating roles that

eRNAs play in biology.

5.1 Mixture Models

The exponentially-modified Gaussian mixture model discussed in chapter 3 provided a math-

ematical explanation of GRO-seq read coverage based on the known enzymatic stages of RNAP.

Although a parsimonious explanation of GRO-seq, this model was numerically expensive to com-

pute necessitating parallel programing development on a large compute cluster. The major bottle

neck in computation involved model selection (iterating over many different mixture topologies

to EM convergence). In addition, current estimation of Θ (the parameters governing RNAP dy-

namics) is limited only to GRO-seq however many biochemical assays (e.g. ChIP-seq chromatin

modifications) provide read coverage diagnostic of regulatory DNA. Disparate datatype inclusion
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may allow for more accurate estimates on Θ. In short, this section will serve to outline a few ideas

on improvements to mixture model parameter estimation scheme discussed in chapter 3.

5.1.1 Model Selection

To revisit the model selection discussed in chapter 3 briefly, let f(g; θ) be some density

function where g = {z, s} represents a position along the genome (z) and the associated strand

orientation (s). Furthermore, f may vary from simple models (Gaussian or Laplace) to more

complicated ones (double geometric or an exponentially-modified Gaussian density). Because for

given a loci there may be multiple eRNAs (characteristic of super enhancers), I described h(g) as

a function formed by the weighted linear combination of K densities (equation 5.1).

h(g; Θ) =

K∑
k=1

πkf(g; Θk) (5.1)

As with most mixture, clustering or topic model settings, much effort is placed in choosing

and adequately modeling K (in our biological setting this corresponds to the number of distinct

and different RNAP loading events). In chapter 3, K was estimated via Bayesian Information

Criteria (BIC) by iterating over k ∈ {1, ..., 20} and running the EM algorithm to full convergence.

The final decision in K used a function proportional to the number of data points, log-likelihood

improvement and model complexity penalty.

By no stretch of the imagination, such a framework does not scale well with increasing data

for which you may very well expect more RNAP loading events (perhaps even to exceed 20 events).

Such a computational burden has led me to revisit the field of Bayesian non-parametrics which

promises to estimate both Θ and K simultaneously.

Unlike the finite mixture model, Bayesian non-parametrics treats K as a random variable with

support between [1,∞]. Of course, given a fixed sample data size (N), K can only exist between

[1, N ] however the infinite mixture model setup allows K to grow with the data (E[K] = α logN).

With the so called “Chinese Restaurant Process” or “Polya urn scheme”, the number of clusters (or

RNAP loading events) is no longer fixed but follows a stochastic, non-parametric process. Equation
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5.2 provides the agglomerative algorithm for this generative model.

p(cn = k|c1:n−1) =


mk

n−1+α : k ≤ Kc

α
n−1+α : otherwise

(5.2)

Here, Kc refers to the number of current components at the nth draw, mk refers to the number

of data points associated with that mixture component and finally c1:n−1 provides for each data

point the kth component ownership. Given the creation of a new component or group, θk is drawn

from some prior distribution G(Θ) and finally g = {z, s} is drawn from the simulation algorithm

outlined in chapter 3. Figure 5.1 shows three samples from this “Dirichlet process” where G(Θ)

refers to the conjugate priors for µ, σ2, λ, π outlined in chapter 3.

Figure 5.1: Bayesian non-parametric simulations of the exponentially-modified Gaussian
distributions. Three draws from a Dirichlet process with a concentration parameter α = 0.1 and
within each draw N = 1000 samples.

The generative story underlying Bayesian non-parametric extensions to mixture modeling is

particularly appealing within the context of eRNAs. As sequencing becomes deeper, the emergence

of low-level or very quickly degraded eRNAs will likely arise. With this in mind, these infinite

mixture models appear as a natural extension to tackle increasing model complexity in GRO-seq

datasets.

Even so, modeling fitting (at least within the exponentially-modified Gaussian setting) might

be challenging given that chapter 3 required derivation of the EM algorithm not only for the
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mixture model latency but also for the convolved density function. To take this one step further,

the most naive solution to estimation of θk—under an infinite mixture set up—would be to let

Gibb’s sampling approximate p(k|g) and then run the EM algorithm to full convergence over data

points only associated with component k at each step in the sampling scheme. Given that MCMC

sampling techniques can require thousands of iterations to converge and burn-in properly this does

not appear like a computationally feasible solution. Another option might be to actually use the

moment estimators discussed in early chapter 3 to perform updates on θk. These estimators can

be computed quickly in terms of running sums. Of course, previously discussed degeneracies in

moment estimation (e.g. π → 1 or π → 0) would need to be addressed, perhaps by appealing to

strong priors (e.g. π̂ = N++α
N+β where β, α� 0 ).

5.1.2 Integration of other Data Types

Although Global Run-on followed by sequencing is a powerful readout on RNAP dynamics,

there exist many other datasets which also capture signal diagnostic of non-coding regulatory loci.

For example, DNase Hypersensitivity (DHS1) profiling or ATAC-seq both provide information

on nucleosome free regions which is a hallmark of TF-binding and regulatory regions. Discussed

heavily in chapter 4, ChIP-seq with antibodies specific to chromatin modifications like H3K27ac and

H3K4me1 display bimodal signal flanking µ̂ (the expected value of RNAP loading). The bimodal

frequency of chromatin modifications surrounding µ̂ follows intuition as the base pairs immediately

proximal to µ̂ are lacking in nucleosomes. An interesting extension of the work presented in chapters

2 & 3 might be a model that attempts to incorporate all such data in a single or hierarchical

framework to better inform estimates on θ (and specifically µ).

To extend the model of RNAP loading to incorporate data such as ATAC-seq or DHS1, we

might make the fair assumption that ATAC-seq is distributed as a Gaussian random variable with

expected value µ and variance σ2. In keeping with previous notation, g = {z, s} is a random

variable representing a genomic coordinate and the associated strand orientation from GRO-seq.

Yet now, we let g′ = {z, u} where u = {1, 2, 3} represents the datatype of interest, either forward
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strand GRO-seq, reverse strand GRO-seq or ATAC-seq. We can then rewrite our density function

f to allow for data type integration possibilities (equation 5.3).

f(g, s; θ) =


λφ( z−µσ )R(λσ − z−µ

σ )w1 s = 1; Forward Strand GRO-seq

λφ( z−µσ )R(λσ + s z−µσ )w2 s = 2; Reverse Strand GRO-seq

φ( z−µσ )w3 s = 3; ATAC-seq

(5.3)

Importantly, ws is just the proportion of data arising from a specific datatype (equation 5.4) and

can be estimated from D = {g1, g2, ..., gn}. In this way,
∑

sws = 1.

ws =
∑
g∈D

1(g ∩ {s} 6= ∅)
|D|

(5.4)

Because each datatype is pairwise independent, the EM algorithm derived in chapter 3 can

be rewritten in almost an identical fashion to include multiple sources of data. With the addition

of ATAC-seq, you are likely to get a better estimate on (µ, σ) but (λ, π) will be unaltered as the

constitute GRO-seq specific parameters. Inclusion of epigenetic marks like ChIP-seq for H3K27ac

or H3K4me1/2/3 into this modeling framework will likely be more challenging given the significant

displacement away from µ̂. Within this in mind, one will need to appeal to a slightly different

density function (e.g. the displaced Laplace mixture model discussed in Appendix C for estimated

TF-binding event localization to µ̂).

5.2 TF Activity Inference Models

Discussed heavily in chapter 4, I showed that eRNA predictions in conjunction with TF-

binding motifs may be used to unbiasedly monitor changes in TF-activity following an experimen-

tal perturbation and across different cell types. Although a rich analysis technique, this model

inherently assumes that eRNAs occur under a birth/death process (eRNAs are either present or

absent). Seen in a multiple publications[3, 106, 67], this binary categorization does not adequately

explain an eRNA present in both samples but differing in GRO-seq read intensity. This section

will serve to outline an idea to incorporate GRO-seq coverage levels into the TF-activity profiling.
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To begin with simplest method first, one could take all the eRNAs that are significantly

differentially expressed between two conditions (p-value < α) and count the number of times some

TF-binding motif was within a h−radius of µ̂. To assess significance, one could appeal to an

enrichment model that takes into account both the number of differentially expressed eRNAs,

number of genome wide motifs and total number of eRNAs (i.e. a hypergeometric model). Of

course such an analysis relies heavily on assumptions such as the correct p-value cutoff (α) and the

correct h− radius (a limitation of the MD-score discussed in chapter 4 as well).

Figure 5.2: A comparison between fold change of eRNAs following nutlin treatment
and distance to nearest p53-binding motif eRNAs were profiled using Tfit in DMSO control
and Nutlin treated HCT116 cells, overlapping Tfit calls were merged and number of reads in both
samples were collect (forward and reverse strand reads were summed together).

To address these nuisance parameters in a more systematic fashion, we might instead look
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for gross correlations in eRNA and TF-binding motif distances and their differential expression

state. To be consistent with the notation discussed in Appendix C, let E = {e1, e2, ...} be the set of

Tfit-identified µ̂ genomic locations and Mi = {m1,m2, ...} be the set of TF-binding motif genomic

locations for transcription factor i. Let Di = {d1, d2, ..., d|E|} be set of nearest-neighbor distances

where dj refers to the distance of the nearest TF-binding motif i to eRNA j (equation 5.5).

dj = min{|m1 − ej |, |m2 − ej |, |m3 − ej |, ...} (5.5)

And finally for complete clarity, let F = {f1, f2, ..., f|E|} be the set of log2 fold changes (or some

other measure of differential expression) in GRO-seq read coverage at each enhancer locus between

control and treatment experiments.

Figure 5.2 shows the relationship between D and F where HCT116 cells were treated with

Nutlin (a drug that specifically activates p53); as such, nearest neighbor distances were computed

against the p53 binding motif. Seen qualatatively in Figure 5.2, a significant population of eRNAs

experienced a large increase in transcription (relative to DMSO) following Nutlin treatment and

are all within a 100 base pairs of a p53 motif.

Although qualitatively diagnostic of TF-activity, manual inspection of all 641 TF-binding

motifs across many different control/treatment pairs is unrealistic. To quantitate the effect in

Figure 5.2, we might appeal to rank order statistics. We would first order eRNAs based on their

differential expression state between the control/treatment pair. Subsequently, we would ask if TF-

binding motifs are significantly nearer eRNAs at the high (or low) ends of the ranked list. However,

to assess significance requires a fundamentally different method than the random walk models and

KS-statistics discussed within the Gene Set Enrichment Analysis literature since we wish to take

into account both eRNA differential expression and a measure of genomic co-occurrence (nearest

TF-binding motif). Even still, I am hopeful that such a method can be developed since their exists

such strong signal observed in Figure 5.2.
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5.3 Predicting Enhancer to Gene Interactions

Chapters 2 & 3 focused primarily on labeling or annotating portions of the genomes. Whether

these annotations involved enhancer, cis-regulatory elements or nascent transcripts, the goal of

each algorithm was fundamentally about classification. Of course labeling is really just the most

primitive step to understanding the functional nature of a specific genomic element. As shown in

chapter 4, enhancers RNA harbor upwards of 40 TF-binding events and are primed with epigenetic

modifications but how do they directly correlate with heightened local gene expression? A method

to predict these enhancer-to-gene-interactions would have extremely important implications on

understanding the phenotypic consequences of a non-coding regulatory mutation at an enhancer.

By using techniques from polymer physics and Bayesian network reconstruction, this next section

serves as an outline for an idea on linking enhancers to genes using GRO-seq data alone.

5.3.1 Network Structure Prediction

With nascent transcriptional data, we can measure the transcriptional output of enhancers

with as much accuracy as their gene counterparts. In fact in this way, we might look to the

well-established field of gene regulatory inference to predict enhancer/gene pairs. The so called

“guilt-by-association” models—where co-regulated genes show correlated transcriptional output—

may also be applicable to enhancer-promoter interactions as we might also hypothesis matched

transcriptional signal.

To be formal, let vi indicate some gene (or cis-element) and let ei,j indicate the presence of

a regulatory pressure from vi to vj . For example, if ei,j > 0 then we might say vi activates vj or

conversely ei,j < 0 implies an inhibitory effect. With little effort, the set of enhancers/genes (V )

and the set of regulatory pressures (E) make a graph, G = (V,E). By allowing the directionality

and magnitude of ei,j to vary, we can encode a signed, directed and weighted graph that describes

a system wide relationship between all functional genomic loci.

The complexity of regulatory networks can not be understated. If the genome consists of
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n functional loci and the regulatory network is fully connected, undirected and simple (i.e. no

self loops and no multi-edges), there are 2
1
2
n(n−1) possible graph structures. The exponential

explosion over network topologies makes inference in any mathematical context difficult. Even

beyond network structure, modeling ei,j (how vi exerts pressure over vj) may result in unrealistic

data requirements or simplifying assumptions rendering the regulatory model useless.

To fully specify network structure learning with high throughput sequencing assays, take an

example a dataset d to be two experimental conditions c1, c2. These conditions may represent a

gene knockout experiment, treatment with a drug or samples over a time-series. To summarize, for

every vi ∈ V there exist a before and after measure of activity. Since non-coding cis-elements can

only be measured by transcriptional or ChIP-seq assays, vi specifically represents the sum of read

counts across the genomic loci [a, b], vi =
∑

s∈{a..b} ys. Taken together, D = {d1, ..., dn} represents

the collection or set of all these perturbation experiments.

5.3.2 Correlation Networks

One approach to network structure creation is by correlation thresholding[111]. The as-

sumption is that loci who are conditionally dependent should be correlated across experimental

perturbations and time series. Let f(vi, vj) be some function that maps the similarity between vi

and vj across D. Common forms of f(.) are given in equation 5.6.

f(vi, vj) =



E[(vi − µvi)(xj − µvj )] covariance

cov(vi,vj)
σviσvj

correlation∑
vi,vj∈{0,1} p(vi, vj) log

p(vi,vj)
p(vi)p(vj)

mutual information

||vi − vj || euclidean distance

(5.6)

Here µvi and σvi represent the expected value and standard deviation of vi across D. Housed under

a similarity matrix S, Si,j represents some measure of distance or correlation between vi, vj . Tp

represent an undirected-unweighted graph, an adjacency matrix A can be easily constructed under

some threshold ρ, Ai,j = 1(Si,j > ρ).
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The sparsity or density of the inferred graph varies as a function of ρ, pointing to the some-

what arbitrariness of ρ. Confidence intervals surrounding any of the above distance metrics can be

computed by randomly sampling D with replacement (i.e. bootstrapping) but a p-value cut-off of

0.05 still retains some level of carelessness.

In brief, thresholding over correlation does not explicitly model the biological mechanism of

ei,j and thus the final network gives up regulatory interpretability. Even so, correlation networks are

ubiquitous and very useful in systems biology: primordial germ cell specification[110], osteosarcoma

cell proliferation[64], circadian clock oscillators[120], micro-biome community detection[39] and

diagnostic expression signatures for Alzheimer’s[178], sarcoidosis[109] and Crohn’s[168] diseases

phenotypes (to name only a few of the hundreds of success stories).

5.3.3 Bayesian Networks

To combat some of the heuristics observed with correlation-thresholding, a popular scheme for

representing a high dimensional joint distribution is a Bayesian network (BaN)[56] where conditional

dependencies within a set of random variables are represented by a directed-acyclic graph (DAG),

G.

p(v1, v2, ..., vn) = p(v1) · p(v2|v1) · p(v3|v2, v1) · .... · p(vn|vn−1, ..., v1)

=
N∏
i=1

p(vi|Pa(vi); θi)

where Pa(vi) represent the parents of vi from G

(5.7)

Modeling p(vi|Pa(vi); θi) varies throughout the literature. By discretization (vi → {0, 1, 2, ..., r}),

a multinomial provides mathematical convenient conjugate priors[57]. In the case of binary dis-

cretization, p(vi|Pa(vi)) might be viewed as specifying soft logical statements[122]. Furthermore,

linear Gaussian functions where the expected value of p(vi|Pa(vi); θi) becomes a linear combination

of Pa(vi) grants a continuous representation of vi[70].

Maximum likelihood or a posteriori methods support estimation of the conditional distribu-

tion parameter set Θ̂ = {θ̂1, .., θ̂n} from D[71] yet require a fully specified DAG. With our goal to
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predict directed relationships between enhancer loci and sets of target genes, we seek estimation

of both Θ̂|Ĝ and Ĝ simultaneously. Ignoring for the moment the computational complexity of

enumerating all possible DAGs given |V | vertices, we would like a function that maps how well

some candidate G fits the perturbation data D. Estimation of G from the likelihood of the data

(equation 5.8) results in a fully connected network, symptomatic of over-fitting[123]. To this end,

an important component to BaN structure learning is model selection where we wish to enforce

complexity penalties that grows monotonically with |G|. Equation 5.8 presents only a popular few

“scoring functions:” Akaike Information[95] and Bayesian Information[95].

L(G,Θ|D) =

|D|∏
i=1

|V |∏
j=1

p(xi,j |Pa(vj) = xi);K =

|V |∑
j=1

|Pa(vj)|

Score(G) =

 2 ·K − 2 · lnL : AIC

|D| ·K − 2 · lnL : BIC

(5.8)

Yet, none of these model selection criterions make explicit use of a prior belief over some DAG, i.e.

p(G). A benefit to incorporating non-coding cis-elements like enhancers is that their regulatory

mode is very well understood biologically: enhancers enhance. In this way, we can place strong

priors on the sign of the directed arc from vi → vj given that vi is an enhancer. With this in mind,

we would like to collect statistics (either in closed-form or via sampling) from the posterior of all

DAG structures given our data of experimental perturbations D (equation 5.9).

p(G|D) = p(D|G)p(G)/p(D)

p(D|G) =
p(Θ|G)p(D|Θ, G)

p(Θ|D, G)
=

∫
Θ
p(D|G,Θ)dΘ marginal likelihood

(5.9)

From MacKay[108], the marginal likelihood in equation 5.9 indirectly encodes Occam’s razor (a sim-

pler model should be favored to a complex one under equal evidence) and thus implicitly performs

model selection.

Regardless of a specific scoring function, an algorithm to search over all DAG structure

falls under the class of NP-complete algorithms given the exponential explosion in the number

graphs with N vertices[28]. Common heuristic optimization algorithms like hill-climbing[166],
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beam-search[70] or even ant-colony algorithms[40] have been used to find a local MAP estimates of

Ĝ under p(G|D). A simple greedy algorithm[71] deletes, inverts or adds an edge to Ĝ and accepts

the edge if the marginal likelihood increases. Common initializations to this greedy algorithm are

the best DAG tree (|E| − 1 = |V |) where a globally optimal MAP estimate can be computed in

polynomial time[29].

A greedy algorithm however highlights some important limitations with BaNs: two different

DAGs can express the same marginal likelihood or model selection criterion score[167, 131]. Briefly,

a BaN specifies a set of conditional independence statements of the form: vi ⊥ vk|vj or p(vi, vk|vj) =

p(vi|vj) · p(vk|vj). Yet such statements can arise under many different DAG topologies.

(1) vi → vj → vk =⇒ vi ⊥ vk|vj

(2) vi ← vj ← vk =⇒ vi ⊥ vk|vj

(3) vi ← vj → vk =⇒ vi ⊥ vk|vj

(4) vi → vj ← vk =⇒ vi 6⊥ vk|vj

The above rules of “d-separation” highlight the shortcomings of both Bayesian and correlation

networks. Given a similarity matrix S computed from N samples drawn from p(vi, vj , vk), we

would observe a high degree of similarity between vi, vj , vk (cases 1-3) yet the causal process giving

rise to this correlation might be extraordinarily different.

Intuitively, this discriminative resolution allows us to define equivalence classes between

DAGs: G,G′ are equivalent if the set of conditional independence states (CI) defined by G and

G′ are equal, G = G′ ⇐⇒ CIG = CIG′ [131]. As a modification to the simple greedy optimiza-

tion algorithm outlined above, we would like to add/remove/invert edges such that the resulting

equivalence classes change not just the underlying DAG.

Although DAG identifiability poses a sincere challenge in linking eRNAs to specific gene pro-

moters, Bayesian networks have become exceedingly popular in modeling gene regulatory networks.

Due in part to their robustness to noise and minimal data requirements[132], BaNs have successfully

predicted signaling pathways in bacteria[52, 104], yeast[117, 179, 78] and humans[138, 63, 45].
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5.3.4 A 3D Genome

Pervasive in genome biology is a bias to understand the genome as a one dimensional track

but this notion of distance is deceptive. DNA exists within a fluid, where proteins like CTCF help

fold and package the DNA three dimensionally. cis-elements like enhancers can be located many

thousands of nucleotides away from their target gene (even located on different chromosomes), but

three dimensionally these loci must be quite close so to exert their regulatory effect.

Very recently, scientists developed assays to measure three dimensional chromosomal proxim-

ity. Techniques like chromosome conformation capture (3C)[44] or chromatin Interaction Analysis

by Paired-End Tag Sequencing (ChIA-PET)[99] glue together portions of the genome near one

another, isolate these regions and sequence them. After lots of post-processing, 3C outputs an

interaction matrix A where each cell [i, j] corresponds to the number of observed three dimensional

interactions between locus i and locus j. Via a binomial test, we can threshold A under some

α-level to an undirected graph.

Among the many discoveries of 3C-like techniques are transcriptional factories: sets of con-

nected loci that display similar transcript levels[50]. And as shown in chapter 2, transcript levels

of 3D-linked enhancer RNAs and genes show correlated RNA production[11]. To highlight the

important connection between enhancer RNA transcription and 3D-linkage analysis, Figure 3.9

showed two connected components generated from a Leukemia cell line (K562). By the simplest

measure of node centrality (degree number), we observe that loci with enhancer transcriptional

signatures (defined by the exponentially-modified Gaussian mixture model) also contain a larger

degree distribution.

Evident at least qualitatively, the CTCF networks in Figure 3.9 display week modularity by

transcriptional presence. The extent to which transcription flows through these networks remains

unanswered and would require accurate null-modeling. Although biologically, 3D transcriptional

flow makes intuitive sense. If a set of genes require a similar level of transcription than RNA

Polymerase might traverse these loci far more efficiently when termination sites are linked to cis-
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elements like promoters or enhancers.

Network visualization of A is still a lower-dimensional projection or discretization of the

true 3D structure. To this end, some modeling effort has focused on inferring a three dimensional

folding of a chromosome in some arbitrary xyz space[181]. The key insight to these methods

requires translating the interaction frequency matrix A to a distance matrix, D. The intuition for

this conversion is simple: the more observations between locus i and j the closer they should be.

Equation 5.10 describes an inverse relationship between frequency and distance by some constant

α.

Di,j =

 (1/Ai,j)
α : Ai,j > 0

∞ : Ai,j = 0

(5.10)

Given α and assuming that ~xi refers to the 3D embedding of locus i, we would like ||xi − xj || to

be as close to Di,j as possible. As a non-convex, non-linear optimization problem, 3D inference

falls under the class of NP-complete algorithms[169]. Yet heuristic methods exist. By taking into

account some constraints with stiff polymer physics, Monte Carlo sampling methods can recover

meaningful chromosome structures[145]. A cleverer solution exists by relaxing the solution space

from ~xi → R3 to ~xi → Rn where n is the number of loci. In this was, the optimization becomes

a convex semi-definite programming problem for which global minimizers can be computed in

polynomial time[181].

No matter the method, I believe strongly that any predictive model of enhancer-gene interac-

tions must take into account the three dimensional architecture of DNA as it is through enhancer-

gene looping that regulation by TF-binding can take place. As I see it, the clearest path forward to

predicting enhancer-gene interactions might be a combined approach of Bayesian network modeling

with priors informed by stiff polymer physics.

5.4 Thesis Conclusions

Hopefully reflected by each proceeding chapter, this thesis took a multi-disciplinary approach

to science. Requiring biological context, software engineering and mathematical modeling, each
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project gave me the opportunity to participate deeply with people from many disparate areas of

science. Specifically, I developed a regression-based method and a novel mixture modeling frame-

work to identify enhancer RNA transcripts in GRO-seq. Having proven that the aforementioned

algorithms were mathematically rigorous, computationally tractable and accurate, I applied these

to a large swath of GRO-seq like datasets and discovered important relationships between eRNAs,

TF-binding motifs and cell type.

The era of “big-data” has certainly had an effect on Biology. With a 3.2 billion base pair

genome and assays that can profile each one of those bases, new computational approaches are being

created daily to tackle these challenges. Algorithm development, however, is not the bottleneck

of the bioinformatics field but rather a systematic approach to interpreting the output of each

new predictive model. As computational-minded scientists continue to innovate within molecular

biology, I feel that emphasis should always be placed on building interpretable algorithms and less

so on vanilla implementations of “machine-learning.”

Instead, we might consider modeling what each piece of data represents both in terms of

technological limitations but also their unique scientific consequences. Models should optimize not

only for quality metrics, like F1-precision scores, but also for intelligibility as an interpretable model

is more likely to give rise to a testable scientific hypothesis. Indeed to optimize for intelligibility,

modelers need to consider the biological or physical phenomena underlying the data. Although

some might argue, data-science is not a field of engineering but a branch of science.

Looking forward, enhancer RNAs or non-coding cis regulatory elements are likely to play a

fundamental role in personalized medicine. With the result that 76% of disease associated genotypes

occur within or near enhancer loci, these cryptic non-coding portions of the genome might be used

to match patients to a specific and optimized treatment options. As we start to move away from

viewing the genome as a linear track and more as a complex shoe-string in a non-stationary fluid,

transcriptional regulation will likely take on new meaning with important therapeutic treatments

following suit.



Bibliography

[1] Karen Adelman and John T. Lis. Promoter-proximal pausing of RNA polymerase II: emerging
roles in metazoans. Nat Rev Genet, 13(10):720–731, 10 2012.

[2] Syed Aftab, Lucie Semenec, Jeffrey Shih-Chieh Chu, and Nansheng Chen. Identification and
characterization of novel human tissue-specific rfx transcription factors. BMC Evolutionary
Biology, 8(1):226, 2008.

[3] Mary A Allen, Hestia Mellert, Veronica Dengler, Zdenek Andryzik, Anna Guarnieri, Justin A
Freeman, Xin Luo, William L Kraus, Robin D Dowell, and Joaqúın M Espinosa. Global
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Table A.1: Feature vector ~x associated with a contig. Let [t, t + l] denote the interval of
genomic positions covered by a contig; in particular, l is the length of the contig. For each position
i in this interval, let yi denote the read count at i. Feature vector coordinates are ordered by
importance via recursive feature elimination.

~x-coordinate description definition

x0 bias term 1

x1 length (contig or gap) l

x2 total count
∑t+l

i=t yi
x3 mean count 1

l

∑t+l
i=t yi

x4 median count median(yt, ..., yt+l)

x5 max count max(yt, ..., yt+l)

x6 min count min(yt, ..., yt+l)

x7 count variance 1
l−1

∑t+l
i=t(yi − x3)2
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Table A.2: Evaluation of bidirectional predictions as eRNAs On the diagonal are total
events in this category. The intersection of a row and column indicates the total overlap between
these events. Significance of the overlap was assessed by hypergeometric and p-value are indicated
as follows: §10−3 , †10−4 , ‖10−8, ‡10−9

IMR90 bidirectional DNAse H3K27ac

bidirectional 5,177

DNAse 1,892§ 140,803

H3K27ac 1,874‖ 20,673 57,623

MCF7 bidirectional DNAse H3K27ac

bidirectional 10,536

DNAse 4,154† 152,768

H3K27ac 4,554‡ 13,673 32,516

HCT116 bidirectional DNAse H3K27ac

bidirectional 14,738

DNAse 6,750† 114,060

H3K27ac 2,417§ 13,769 57,623
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Figure A.1: eRNA prediction Interval. FStitch active calls that overlap both an H3K27ac and
DNase I hypersensitivity chromatin marker were isolated on both strands. Sense and anti-sense
strand calls are paired to their nearest neighbors. The difference between the start of the positive
and the negative strand call are shown here. A positive value corresponds to overlap and negative
to separation. The green line is a fitted Normal and the red bars indicate data points within two
standard deviations.
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Figure A.2: Schematic of the merged method of identifying regions of interest. In this
region (1000 to 6000) there are two active regions called in both Experiment A and Experiment B.
The first active call in Experiment A (1000 to 2400) overlaps the first active call in Experiment B
(1800 to 3400). All distinct regions of the overlap are retained in the regions of interest resulting
in three segments: (1000 to 1800), (1800 to 2400), and (2400 to 3400). The example on the right
shows how behavior is similar when a active call in Experiment B (4400 to 5000) is contained within
a active call in Experiment A (3600 to 6000).
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Figure A.3: Changes in coordinates of 5′ or 3′ end of active call. The distance between
the 5′ end of an FStitch active call in DMSO compared to the nearest 5′ end in Nutlin (green).
(Requiring the Nutlin call to be used only on the nearest DMSO call.) Similarly the 3′ end is
shown in blue. Based on these distributions, we merged all regions smaller than 100 bp with an
adjacent segment. It is also clear from the heavy tail that many regions change substantially in
length between the two experiments.
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Figure A.4: Bidirectional calls overlapping enhancer marks are highly transcribed. We
posit that bidirectional calls that overlap enhancer marks (A) the DNase I hypersensitivity (DHS)
mark and (B) H3K27ac will show strong signatures of transcription. Blue: Overlap between the
enhancer mark and a bidirectional call; Green: Bidirectional calls without overlap to an enhancer
mark; Red: Enhancer marks without a corresponding overlapping bidirectional call.
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Algorithm 1 Adjusted EM Algorithm for RNAP Mixture Model Inference

Require: D, K, ε, τ

Ensure: K > 1, |D| > 1

1: Randomly Initialize Θ

2: while L(Θt+1)− L(Θt) > ε do

3: E-Step: Compute Expectations eq. 7 and 9

4: for i = 1→ |D| do

5: for k = 1→ K do

6: rki ,E[X|gi; θt],E[X2|gi; θt],E[Y |gi; θt]

7: end for

8: end for

9: M-Step: Maximize Conditional Expectations eq. 10

10: for k = 1→ K do

11: θt+1
k := argmax

θ
E
[

log p(C|θk)|D, θtk
]

12: end for

13: Lold = L(Θt+1)

14: for k = 1 ∈ Ke do

15: ls,new = ls,k +N (0, τ)

16: if L(Θnew) > Lold then

17: Lold := L(Θnew)

18: ls,k := ls,new

19: end if

20: end for

21: end while

B.1 Seeding the EM

Like many gradient based optimization methods, the EM algorithm is subject to local max-

ima across the likelihood landscape. A common approach to handle this issue is to use many
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random initializations of Θt=0, yet this approach is inherently time consuming. Seen commonly

with Gaussian mixture models [143], both the EM’s linear rate of convergence and final parameter

quality, L(Θ∗), vary most as a function of µ0
k: the random initialization of the LI component center.

To this end, we propose an approximate windowing method to scan for regions of local

likelihood for an LI component within D. Let D[a,b] = {gi : a ≤ zi ≤ b} be a specific ordered

collection of D. At D[a,b] we compute the ratio of BIC scores of a fully specified single component

mixture model (parameters ΘB) to a uniform distribution with support across [a, b] (equation B.1).

LL(D[a,b]) =
logN[a,b] − 2N[a,b] log(0.5/(b− a))

8α logN[a,b] − 2 logL(ΘB)
(B.1)

It should be noted that the elongation ls components l+, l− are set to b, a respectively. Overlapping

windows of size b−a are merged if LL(.) exceeds 1. Unless otherwise specified, α = 1. These merged

windows are then used for the random initialization µk as they constitute a heuristic estimate to

the expected value of an LI component.

B.2 Datasets

We utilize previously published GRO-seq datasets to perform RNAP inference. Data from

four separate publications were obtained as FASTQ files from the short read archive: SRP035278

[3], SRP031885 [105], SRR1552484 [34] and ERP009673 [92]. Reads were mapped by bowtie2 under

the “−−very-sensitive” parameter settings. Mapped reads were converted to Bedgraph format via

samtools and bedtools, versions 0.1.19 and 2.22 respectively.

The SRP035278 dataset [3], from HCT116 cells, was compared to publicly available EN-

CODE [163, 164] peak data on the same cell line: DNase hypersensitivity (ENCFF001WIJ),

H3K27ac (ENCFF001VCO), H3K4me1 (ENCFF001VCN) and H3K4me3 (ENCFF001XBW). The

SRR1552484 dataset [34], from K562 cells, were compared to ENCODE’s CTCF ChIA-PET data

on the same cell line (ENCFF001THV). Gene annotations with associated transcription start and

termination sites were collected from the UCSC table browser (Hg19).
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B.3 CTCF ChIA-PET network construction

The ENCODE provided file defining a list CTCF chromatin interactions (output type: “long

range chromatin interactions”) was used for the network analysis. In brief, one base pair overlapping

CTCF loci were merged to construct an adjacency matrix, Ai,j , where i corresponds to some merged

loci and Ai,j evaluates to one if merged regions i and j contain a chromatin interaction. The network

homophily or modularity score sorted by LI component presence is defined by equation B.2 [125].

Q =
1

2m

∑
i,j

(Ai,j −
kikj
2m

)I(i, j) (B.2)

In equation B.2, I(i, j) evaluates to one if locus i and j both contain or lack a RNAP loading event

prediction, otherwise I(i, j) evaluates to zero. ki refers to the number of chromatin interactions

involving locus i and m =
∑

i ki. Measures of node centrality (degree, eigenvector and closeness)

were computed using the python package Networkx [65].

B.4 Software Package: Tfit

Transcription Fit (Tfit) is a freely available, open source software package written in the

C/C++ program language that requires GNU compilers 4.7.3 or greater. Tfit uses the popular

openMPI framework to perform massive parallelization via multithreading on multiple core, single

node systems or multiple core, multiple node compute clusters. Users are asked to provide nascent

transcription data in the bed graph file format. Users may (optionally) specify parameters such as

the number of random seeds to EM, the expected error in read mapping (p) and model complexity

bounds (M).

B.5 Numerical confirmation of model inference by simulation

We present a probabilistic generative model of RNAP that provides a straightforward method

to draw a collection of random samples D from p(g; Θ). As shown in Fig. 1, our model governing

RNAP location is generative. The two distinct stages of RNAP, Loading/Initiation (LI) and Elonga-
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tion/Termination (ET), are illustrated by 250 random draws from our mixture model. Qualitatively,

our simulated data resembles GRO-seq read pile up seen in previous studies [3, 102, 105, 92].

Using data generated directly from our model, we first test the accuracy and correctness

of our parameter estimation procedure. To study the robustness of our parameter estimation

methodology, we drew varying sizes of D from 10 to 500 data points at equally spaced intervals of

20. Under each sample size, we collect 25 unique subsets from p(g|Θ) and compute the standard

error |Θ− Θ̂|. As shown in SFig. 1A, we observe a significant and fast decrease in standard error

as D increases in size.

Lastly, to monitor accuracy in model selection by Bayesian Information Criteria (BIC), we

drew from p(g|Θ) under varying levels of model complexity, |K| ∈ {1..20} (SFig. 1B). To quantify

variability in accuracy, we drew 25 sets of D from p(g|Θ) where |D| = 100. Under each set, we

computed MLE estimates for every model topology between 1 to 20 and select the model with the

minimum BIC score. A maximum of 20 is chosen arbitrarily and for computational convenience. We

note that users can modify this value as necessary. We observe that our model selection procedure

correlates well with the true |K|.
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Table B.1: Genome wide summary statistics of inferred Θ̂. Computations of µ− TSS and

ls− 3‘end are specific to transcribed regions overlapping a single isoform gene. ŵp was recomputed

for a 2KB window surrounding µ̂k as |ls − µk| will artificially correlate with wp.

Mean Median Standard Deviation

|Kp| 2.8 2.1 ±1.5

µ− TSS -42 -15 ±120

ls− 3‘end 6325 6194 ±1200

σ 38.84 21.46 ±65.73

λ 170.15 137.57 ±130.15

π 0.51 0.51 ±0.29

wp 0.73 0.79 ±0.13
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Table B.2: Measures of node centrality: Degree, Eigenvector and Closeness. Nodes were

grouped according to one base pair overlap with either a Ref-Seq TSS annotation or a bidirectional

transcript (Bidir.) classification. Note: ∼ indicates nodes lacking a TSS or Bidir. one base pair

overlap. The mean centrality measure (with associated standard deviation) across all node labeling

types is reported in each cell. Bold lettering indicates a significant increase (p-value < 10−5 ) in

mean relative to ∼ TSS and ∼ Bidir. as assessed by a bootstrapped permutation of node labeling

to provide an empirical distribution over each centrality measure.

Centrality ∼TSS TSS TSS ∼TSS

Measure ∼Bidir. ∼Bidir. Bidir Bidir

Degree 1.81±0.3 2.01±0.6 2.20±1.1 2.44±1.6

Eigenvector 5.31±10.1 7.77±12.3 8.06±30.1 43.53±80.7

Closeness 3.89±2.12 3.19±5.12 5.14±1.12 5.81±2.5
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Figure B.1: Performance on simulated data. (A) shows the effect of error, defined as |Θ−Θ∗|,

with increasing data size |D|. (B) quantifies the relationship between true and estimated model

complexity. Data size of simulation grows linearly with model size.
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Figure B.2: Distribution of model complexity at transcribed single isoform genes To
perform ROC analysis, we consider a true positive to be an RNAP mixture model fit where |Kp|
exceeds zero over FStitch overlapping single isoform genes. We consider a false positive to be an
RNAP mixture model fit where |Kp| exceeds zero over FStitch-defined transcription inactive regions
of the genome. We vary the Bayesian Information Criteria penalty γ to assess the relationship
between true and false positive rates. At a false positive rate of 0.05, we present the distribution
of |Kp| at single isoform genes. We observe that the mode of this distribution lies prominently at
one.
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Figure B.3: Distribution of model complexity at various regulatory loci and pairwise
distances between LI component centers (A) We performed inference in RNAP LI component
locations over three types of regulatory loci: DNase I Hypersensitivity sites (DHS1) profiled by
ENCODE [164], Super Enhancers profiled by dbSuper [84] and nascent transcriptional regions
profiled by FStitch [11]. (B) At loci where |Kp| exceeds one, we asked for the pairwise distances
between all LI component centers |µi − µj | where i 6= j. Finally, we place this pairwise distance
histogram in reference to distribution of LI component standard deviations defined by

√
σ2 + 1/λ2

.

Figure B.4: RNAP inference procedure computes consistent parameter estimates across
biological replicates. (A) quantifies the number of LI components predicted across each tran-
scription unit as a histogram. Blue line and scatter indicate the mean |Kp| of replicate 2 condi-
tioned on replicate 1. Grey shading incates one standard deviation (B-C) shows the correlation
between biological replicates of model complexity prediction and initiating parameter λ̂ estimation
respectively. (D) shows all pairwise correlations between inferred mixture model inference between
biological replicates. Note, that Θrep1 and Θrep2 were ordered by µk and this θrep1 and θrep2 were
compared only if they shared equivalent rank.
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Figure B.5: Model predictions track closely with known estimates of gene annotations.
(A) shows the distribution of estimated strand bias π̂ from LI classifications grouped by forward,
reverse strand or no annotated gene loci. Under a normality assumption of π̂, sample averages
of π̂ grouped by RefSeq annotation were computed via a t-test. (B) shows the distance between
µ̂ − TSS defined by RefSeq gene annotations. Importantly, this analysis was only computed at
single isoform genes such that a one-to-one correspondence between µ and the annotated TSS is
expected. (C) shows the distance L̂− 3-prime termination site defined by RefSeq gene annotations.
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C.1 eRNA origins

In prior work[9] we leveraged the known behavior of RNA polymerase II to identify individual

transcripts within nascent transcription data. Although our model[9], known as Transcription fit

(Tfit), does not implicitly assume polymerase initiation will be bidirectional, we observed bidirec-

tional transcription at both promoters[48] and enhancers[38]. Whether bidirectional (2 transcripts)

or unidirectional (1 transcript), our model precisely infers the point of RNA polymerase loading,

e.g. the origin point of transcription. Formally, this origin point (µ) represents the expected value

of a Gaussian (Normal) random variable discussed in great detail in our previous publication[9]

and later within this supplement.

As reported previously[9], we observed that super enhancers[84] and regions annotated as

transcribed [4, 11, 27, 38] often contain multiple origins. For example, as shown in Extended Data

Figure C.1, the entirety of this super enhancer annotated region is transcribed and identified as

a single region by most nascent transcription analysis algorithms[4, 11, 27, 38]. However, since

Tfit looks for site of initiation rather than transcribed regions, our model identifies three origins of

transcription in this region, each giving rise to two transcripts proceeding in opposite directions.

For clarity, we refer to the region as a “transcribed region”, each inferred position of polymerase

initiation as an eRNA origin, and the resulting transcripts (in this case six) as individual eRNAs.
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C.2 Genomic Feature Data Integration

We examine the relationship between genomic features such as TF-binding peaks, chromatin

modifications, DNA sequence, TF-binding motifs and enhancer RNA presence. Frequently, we

compare two (or more) datasets for association between the genomic features. Unless otherwise

stated, we say two genomic features overlap or associate if the two elements are located on the same

chromosome and the center of their feature is within 1500 base pairs of each other. For example,

let some TF-binding peak be located on chromosome 1 with a start coordinate of 10000 and stop

coordinate of 10405 and an eRNA origin at chromosome 1 with a start coordinate of 10200 and stop

coordinate of 10201. Given that the center of TF-binding peak is ((10405 + 10000)/2 = 10202.5)

and |10202.5 − 10200.5| < 1500 we would say these two genomic coordinates associate. The 1500

base pair cutoff is justified in Extended Data Fig C.2. Furthermore, all genomic coordinates refer

to hg19 or mm10 for human or mouse datasets, respectively.

C.3 Nascent transcription data processing

SRA files were downloaded from the NCBI Gene Expression Omnibus (GEO, http://www.

ncbi.nlm.nih.gov/geo/). Accession numbers are provided in Supplementary Table C.5. The SRA

files were converted into fastq format using fastq-dump 2.3.2-5 in the SRA Toolkit[148]. Studies uti-

lizing a second strand synthesis kit were reverse complemented using fastx-reverse-complement[68]

-Q33. Human and mouse fastx files were mapped to the hg19 and mm10 genomes, respectively, using

bowtie2[94] version 2.0.2 -very-sensitive. The resulting sam files were converted to sorted bam files

using samtools[100] version 0.1.19. Each sorted bam was converted into two strand-separated bed-

graphs (one file containing positive strand and one with negative strand reads) using bedtools[139]

genomeCoverageBed version 2.22.0. We used the hg19 all.fa genome file from UCSC for human

data and mm10 Bowtie2 index.fa for mouse data. The bedgraphs were sorted then converted to

bigwig format using bedGraphToBigWig[83]. The hg19.chrome.sizes and mm10.chrome.sizes input

files were made using fetchChromSizes[162] from UCSC and the hg19 and mm10 genome files,

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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respectively.

C.4 Tfit parameters and bidirectional prediction

Transcription fit (Tfit) is a finite mixture model that utilizes a model of RNA polymerase

II behavior to identify and characterize all transcripts in nascent transcription data[9]. Here we

modify our previous approach in two ways. First, to rapidly identify all sites of transcription initi-

ation genome-wide, we compute a likelihood ratio statistic between a fully specified exponentially-

modified Gaussian (equation C.1, the loading/initiation/pausing phase of our earlier Tfit model[9])

against a Uniform distribution background model (equation C.2) at some genome interval [a, b].

We hereafter refer to this approach as Template Matching. Second, we amend our earlier estimate

of the loading step of polymerase activity to permit variable distances between the forward and

reverse strand transcripts, hereafter referred to as a polymerase footprint. For completeness, we

now describe both modifications in full detail.

C.4.1 Template Matching

The loading/initiation/pausing portion of our earlier model, fully specified in [9], describes

the initial activity of RNA polymerase II (RNAP) and captures initiating transcription, which is

often bidirectional, genome-wide. Briefly, our model assumes RNAP is first recruited and binds to

some genomic coordinate X as a Gaussian distributed random variable with parameters µ, σ2 where

µ might represent the typical loading position (e.g. origin of any resulting transcript either TSS or

enhancer locus) and σ2 the amount of error in recruitment to µ. Upon recruitment, RNAP selects

and binds to either the forward or reverse strand, which we characterize as a Bernoulli random

variable S with parameter π. Following loading and pre-initiation, RNAP immediately escapes the

promoter and transcribes a short distance, Y . We assume that the initiation distance, is distributed

as an exponential random variable with rate parameter λ. In this way, the final genomic position

Z of RNAP is a sum of two independent random variables (X + SY) where the density function

(resulting from the convolution/cross-correlation) is given in equation C.1. Note that, in keeping
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with traditional notation, we let upper case, non-greek alphabet letters represent random variables

and the associated lower case refer to instances or observations of the stochastic process.

h(z, s;µ, σ, λ, π) = λφ(
z − µ
σ

)R(λσ − sz − µ
σ

)1(s)

1(s) =

 π : s = +1

1− π : s = −1

(C.1)

Above, R(.) refers to the Mill’s ratio and φ(.) refers to the standard normal density function.

In contrast, reads obtained outside of initiation regions are captured by a Uniform distribution

(equation C.2).

u(z; a, b) =
π̂

b− a
(C.2)

Where π refers to the maximum likelihood estimator for the strand bias (equation C.3).

π̂ =
N∑
i=1

I(si > 0)/N (C.3)

Finally, the (log-)likelihood of the exponentially modified Gaussian (LLemg) and Uniform (Lu)

distribution computed at a genomic interval [a, b] using aligned read counts is given in equation

C.4.

LLemg =

b∑
i=a

log h(zi, si; µ̂, σ̂, ˆ1/λ, π̂)

LLu =

b∑
i=a

I(si > 0) log
π̂

b− a
+ I(si < 0) log

1− π̂
b− a

LLR = LLemg − LLu

(C.4)

Here, µ̂ refers to the center of the window. Based on our previous study[9], we set {σ̂, ˆ1/λ, ŵ, π̂} =

{34.2, 391.7, 0.358, 0.501}.

The algorithm is a simple sliding window of LLR computations. Overlapping (1 base pair)

regions of interest (LLR > τ) are merged. In every study profiled for bidirectional transcription

by Tfit, τ = 103. More information on running and using Tfit output is available at github.com/

azofeifa/Tfit.

github.com/azofeifa/Tfit
github.com/azofeifa/Tfit
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C.4.2 EM Algorithm and Bidirectional Origin estimation

On its own however, the template matching module of Tfit does not provide an exact estimate

over Θ (the parameters associated with a single loading position). To perform optimization over

Θ and specifically µ (the origin of bidirectional transcription), we derived the Expectation Max-

imization algorithm (outlined in detail in our previous publication[9]) to optimize the likelihood

function of equation C.4. In brief, we used the following EM-specific parameters at each loci: the

number of random re-initializations per loci was set to 64,the threshold at which the EM was said

to converge, |llt − llt+1|, was set to 10−5. Finally for computational tractability, the EM algorithm

halted after maximum of 5000 iterations.

At each window predicted by the sliding window algorithm, we perform inference over

µ, σ, λ,and π by the EM algorithm. Details of the derivation, model selection and algorithm design

can be found in our previous report [9].

C.4.3 Footprint Estimation

Importantly, our previous effort at parameter estimation of the finite mixture model assumed

that RNA polymerase II behaved as a point source[9]. Consequently, we could not incorporate a

systematic approach to estimate observed gaps between the forward and reverse strand peaks which

deviate more than could be explained by an exponentially-modified Gaussian density function.

Here, we amend our model only slightly to estimate this behavior. We call the distance between

the forward and reverse strand peaks, the footprint of RNA polymerase II or fp. In brief, fp

amounts to adding or removing a constant to zi. Assuming that fp > 0 then the above equations

remain valid by a simple transformation to zi.

zi := zi − si · fp

As in our previous effort[9], we insert this new parameter into the conditional expectation of the

latent variables given the observed random variables and perform a gradient step. This allows us
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to optimize for fp (equation C.5).

f̂pk :=
1

rk

N∑
i=1

(si(zi − µ)− E[Y |zi, si; θg]) · rki (C.5)

The interested reader should refer to our previous paper [9] where derivation of the EM algorithm

and fitting the Tfit model are discussed heavily. For complete clarity, the full expression of the

expectation operators is given below.

E[Y |gi; θt] = si(z − µ)− λσ2 +
σ

R(λσ − si(zi − µ)/ σ)

rki = p(k|gi; θgk) =
wk · p(gi; θgk)∑
k∈Kwk · p(gi; θgk)

rk =

N∑
i=1

rki

(C.6)

C.5 Computation of Bimodality, ∆BIC

To assess whether the distribution of ChIP peaks or TF-binding motifs around an eRNA

origin is bimodal, we developed and employed a pairwise distribution test. We define the ∆BIC

score (in equation C.8) to be the difference in BIC scores between a single Laplace-Uniform mixture

centered at zero (unimodal) and a two component Laplace-Uniform mixture with displacement away

from 0, i.e. c (bimodal). The density function of a Laplace distribution with parameters (c, b) is

provided in equation C.7 and we use the formulation for the Uniform distribution of equation C.2.

p(d; c, b) =
1

2b
exp−|d− c|

b
(C.7)

Here D refers to the set of distances, di ∈ [−1500, 1500], either the center of the TF-binding peaks

obtained from MACS or the center of TF-binding motifs from PSSM scanner relative to eRNA



145

origin. If ∆BIC � 0, we assume bimodality in TF peak location relative to the eRNA origin.

L0(D; Θ∗) =
N∏
i=1

1

3000

L1(D; Θ∗) =
N∏
i=1

w
1

2b
exp{−|di|

b
}+

1− w
3000

L2(D; Θ∗) =

N∏
i=1

w

4b
exp{−|di − c|

b
}+

w

4b
exp{−|di + µ|

b
}+

1− w
3000

∆BIC := −2(logL(D)1 − logL(D)2) + k log(|D|)

(C.8)

Θ∗ is optimized again by the Expectation Maximization algorithm where the update rules are given

in equation C.9.

dt+1 =
1

2(ra + rb)
(
n∑
i=1

rai di +
n∑
i=1

rai di)

bt+1 =
1

2(ra + rb)
(
n∑
i=1

rai |di|+
n∑
i=1

rbi |di|)

wt+1 =
ra + rb

r

rai =
p(di; c, b)

p(di; c, b) + p(di;−c, b) + u(di;−1500, 1500)

rbi =
p(di;−c, b)

p(di; c, b) + p(di;−c, b) + u(di;−1500, 1500)

rui = 1− rai + rbi rx =
N∑
i=1

rxi r = ra + rb + ru

(C.9)

We refer to a signal as bimodal when ∆BIC> 500, estimated from the distribution in Ex-

tended Data Fig. C.4D.

C.6 Motif Curation and Motif Scanning

Transcription factor binding motifs are summarized as a position specific probability distri-

bution over the nucleotide (ATGC) alphabet, referred to commonly as a position weight matrix

(PWM). These models were gathered from the HOCOMOCO[89, 90] database of hand-curated

transcription factor binding motifs for human and mouse (downloaded from http://hocomoco.

autosome.ru/final_bundle/HUMAN/mono/ on 12/10/15). In total there exist 641 and 427 motif

models for human and mouse, respectively.

http://hocomoco.autosome.ru/final_bundle/HUMAN/mono/
http://hocomoco.autosome.ru/final_bundle/HUMAN/mono/
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Motif scanning was performed by the algorithm outlined by Staden[155]. False discovery rate

(FDR) was quantified by the approach outlined by Storey[156]. Only sequences were the FDR did

not exceed 10−4 were considered a significant TF-sequence motif, the center of the matching se-

quence was used for all subsequent analysis. The basic stationary background model was estimated

from GC content of hg19 (human, 42.3%) and mm10 (mouse, 41.2%) genome builds. Motif scan-

ning was implemented in the C++ programming language using the popular openMPI framework

to perform massive parallelization on compute clusters. This implementation, referred to as MDS,

can be downloaded at github.com/azofeifa/MDS.

C.7 MD-score Hypothesis Testing

C.7.1 The Motif Displacement score

The Motif Displacement score (MD-score) relates the proportion of significant motif sites

within some window 2 ∗ h divided by the total number of motifs against some larger window 2 ∗H

centered at all bidirectional origin events. It is calculated on a per PWM binding model basis.

Let Xj = {x1, x2, ...} be the set of bidirectional origin locations genome wide for some ex-

periment j. Let Yi = {y1, y2, ...} be the set of all significant motif sites for some TF-DNA binding

motif model i genome wide, which is static as it only depends on the genome build of interest.

Therefore the set of all MD-scores is calculated by equation C.10.

g(Xj , Yi; a) =
∑
x∈Xj

∑
y∈Yi

δ(|x− y| < a)

mdj,i = g(Xj , Yi;h)/g(Xj , Yi;H)

mdj,i ∈ [0, 1) if h < H

(C.10)

Here δ(.) is a simple indicator function that returns one if the condition (.) evaluates true otherwise

to zero. The double sum, i.e. g(a), is naively O(|X||Y |) however data structures like interval trees

reduce time to O(|X| log |Y |).

github.com/azofeifa/MDS
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To be clear, there exist 641 TF-DNA binding models in the HOCOMOCO database and

therefore 641 MD-scores exist for some experiment j. Let mdi be the MD-score computed for some

TF-DNA binding motif model. Therefore let MDj = {md1,md2, ...,md641} be the vector of all

MD-scores for some dataset j.

C.7.2 MD-score significance under stationary model

If yi and xi are uniformly distributed throughout the genome, i.e. following a homogeneous

Poisson point process, then g(h) is distributed as a binomial distribution with parameters p,N

(equation C.11).

g(h) ∼B(n, p)

B(k;n, p) =

(
n

k

)
(p)k(1− p)n−k

where n = G(H) and p = h/H

(C.11)

In cases where g(H) � 0, the binomial is well approximated by a Gaussian distribution and

hypothesis testing under some α level can proceed in the typical fashion. In brief, significantly

increased MD-scores (by a binomial test) is diagnostic of heightened motif frequency surrounding

eRNA origins.

C.7.3 MD-score significance under a non-stationary background model

Motifs, however, are not distributed uniformly throughout the genome. Specifically, particu-

lar regions, such as gene promoters of the genome are known to exhibit significance sequence bias.

Indeed, the localized GC content is highly non-stationary at eRNAs (Extended Data Figure C.7A).

Consequently, a binomial test—which assumes a homogeneous Poisson process of motif locations

genome wide—may be a too liberal a null model (e.g. the wrong background assumption). In this

paper we assume H = 1500 bps.

To control for this non-stationarity, we propose a simulation based method to compute p-

values for MD-scores under an empirical CDF, i.e. a localized background model. Let p be a 4x2H
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matrix where each column corresponds to a position from an origin and each row corresponds to a

probability distribution over the DNA alphabet {A,C,G, T}. To be clear, p0,0 corresponds to the

probability of an A at position -H from any bidirectional origin, similarly p2,1500 corresponds to the

probability that a G occurs at exactly the point of the bidirectional origin.

Therefore, the simulation based method of the background model is simple. Given an exper-

iment of Xj bidirectional origin locations, we simulate |Xj | sequences following this non-stationary

GC content bias. We then iterate over all PWM models and look for significant motif hits, as dis-

cussed in Supplemental Note C.6. We then compute summary statistics about the displacement of

the motif relative to the set of synthetic sequences, i.e. MD = {md1,md2, ...,md641}. It should be

noted that, in this dataset, any motif match is by complete chance alone. We iterate this process

10,000 times to compute a random distribution over mdi, i.e. ~mdi, and thus we can assess the

probability of our observed (i.e. from real data) mdi relative to our empirically simulated ~mdi.

Example simulations are shown in Extended Data Figure C.7B.

C.7.4 MD-score significance between experiments

The MD-score constitutes a proportion and as long as h is upper bounded by H then mdj,i

will always exist within the semi-open interval [0, 1). An important question is whether mdj,i has

significantly shifted between two experiments j, k as a function of Xj and Xk. This analysis is

straightforward under the two proportion z-test. Specifically we are testing the null and alternative

hypothesis tests in equation C.12.

H0 : mdj,i = mdk,i

H1 : mdj,i 6= mdk,i

(C.12)

We can then compute the pooled sample proportion (pi) and standard error (SE) as shown in

equation C.13. Therefore our test statistic z (equation C.14) is normally distributed with mean 0
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and variance 1.

pi =
(mdj,i · g(Xj , Yi;H) +mdk,i · g(Xk, Yi;H))

g(Xj , Yi;H) + g(Xk, Yi;H)

SE =
p(1− p)

(1/g(Xj , Yi;H) + 1/g(Xk, Yi;H))

(C.13)

z =
mdj,i −mdk,i√

SE
∼ N(0, 1) (C.14)

Computation of the p-value can be assessed in the normal fashion under some α level. In all

comparisons, we utilize multiple hypothesis correction outlined by Storey[157].

C.8 Cell type and TF enrichment analysis

The sections serves to outline the rational for determining if heightened MD-scores correlate

with a specific cell type category. More traditional approaches such as a one-way ANOVA test

(MD-scores computed from similar cell types are grouped and within group variance is assessed via

a F-distribution) will not adequately account for MD-scores with little support (i.e. motif hits that

overlap very few eRNAs). To overcome this, we propose a relatively straightforward method that

relies on performing hypothesis testing on all pairwise experimental comparisons.

Let j and k be two nascent transcription datasets of interest, then mdsj,i and mdsk,i refer to

MD-scores for some TF-motif model (i) for which we can perform hypothesis testing over as outlined

in Supplementary Note C.7. If we let α be the threshold at which we consider mdsj,i −mdsk,i to

significantly increase, than we expect on average α ·N − 1 false positives when considering a single

experiment against the rest of the corpus of size N .

Put another, if we let the random variable Sj,i refer to the number of times we consider

mdsj,i −mdsk,i to significantly increase in a dataset comparison then Sj,i is binomial distributed

with parameters N − 1 and α (equation C.15) assuming that there is not a relationship between

the motif model i and the experiment j.

Sj,i =

N∑
k=1

I(p(mdsj,i > mdsk,i) < α) (C.15)
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In practice we set α to 10−6 and I refers to an indicator function which returns 1 in the case where

the statement evaluates to truth otherwise 0.

Naively, we could now ask for all the datasets annotated as some cell type ct and then perform

hypothesis testing on Sct (the sum of Sj,i’s where experiment j belongs to the ct cell type set).

Importantly, we only consider dataset pairs for which i and j belong to different cell type sets.

Unfortunately, a single experiment within the cell type set might show strong association with

a TF (i.e. 90% of the N − 1 comparisons significantly deviate from zero) where the rest of the

cell-types show small numbers of significant deviations. By a binomial test, this is unlikely—even

when considering the expansion induced by the cell type set—but intuitively does not fit into our

notion of cell type association.

To this end, we define a final random variable Act,i to be the number of times motif i is

significantly enriched for a dataset j and that dataset j belongs to some cell type (equation C.16).

A =

N∑
j=1

p(Sj,i > S) < 10−6
I(j ∈ CT ) (C.16)

where CT refers to the set of experiments that are annotated as cell type ct. From there it is easy

to assess A across cell types and motifs under a contingency model using Fisher’s exact test.

C.9 Associated File Types

We provide here three important sets of tables: 1) a folder of Tfit predicted eRNA origins for

every publicly available GRO-seq dataset to date (771); 2) the genomic locations of 641 significant

TF-binding motifs (HOCOMOCO) and 3) a histogram of motif locations surrounding eRNA origins

for each of the 771 nascent transcript datasets and 641 motif models. These files types are dis-

cussed in the Supplementary Data Tables ?? for Tfit, TF-binding motifs and motif displacements

histograms respectively.
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C.10 IPython Notebook

Given the shear size of the data analyzed (771 nascent transcription datasets, 641 TF mo-

tif models), we could not explore all possible comparisons. However, we provide here a tool,

wrapped within the Jupyter Notebook environment, to explore this data resource. The python

package motif displacement analysis along with the Jupyter notebook environment is downloadable

at https://github.com/azofeifa/motif_displacement_analysis. Capabilities include drawing

and displacement heatmaps related to the motif displacement distributions, quantifying different

MD-scores, mean motif distances and generic KS-test statistics.

https://github.com/azofeifa/motif_displacement_analysis
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Figure C.1: Annotated super enhancer region showing RNAP inference. An annotated
super enhancer (starting at chr2:10,456,371), GRO-seq read coverage from an HCT116 dataset??
and the final inferred density function obtained by Tfit[9]. Via Bayesian model selection, three
distinct eRNA origins are identified. Green dots indicate the eRNA origin estimate.
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Figure C.2: Most sites of bidirectional transcription identified by Tfit[9] lack association
with promoter regions. Sites of bidirectional transcription were profiled in a K562 GRO-cap[35]
(SRR1552480) experiment using Tfit parameters (Supplementary Note C.4). A promoter is defined
as the region associated with an annotated gene’s start site using RefSeq release 76. Bimodiality
was estimated via a two component Gaussian mixture model fit with the EM algorithm.

Figure C.3: Sites of non-promoter associated bidirectional transcription overlap marks
of regulatory DNA. The percentage of eRNAs in a K562 GRO-cap dataset (SRR1552480[35])
that associate with specific chromatin marks. Promoter associated Tfit predictions were removed
from this analysis. Chromatin mark peaks were gathered from ENCODE for the K562 cell line
(Supplementary TableC.1).
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Figure C.4: Sites of non-promoter associated bidirectional transcription overlap sites of
TF-binding. (A) The proportion of eRNAs associated with a given transcription factor. (B) The
number of unique TF-binding peaks occurring at individual eRNAs. (C) TF displacement data
was calculated within a 1.5KB radius around eRNA locations and bimodal model selection was
performed via a Laplace-Uniform mixture (Supplementary Note C.5). Briefly, a larger ∆BIC value
indicates greater support for bimodal TF peak displacement. (D) The distribution of estimated
peak displacements. All data from K562 cells, both nascent transcription[35] (SRR1552480) and
ENCODE ChIP-seq peaks (Supplementary TableC.1).



155

Figure C.5: TF-binding sites associated with cell type unique eRNAs modulate local
gene expression. (A) A schematic of the analysis. Briefly, TF-binding sites (by ChIP) conserved
between two cell types were identified. These (non-promoter associated) genomic loci were further
categorized as associated with an eRNA in cell type 1 (CT 1) and lacking an eRNA in cell type
2 (CT 2) or vice versa. Finally, log1 0 fold chance in FPKM of genes near these sites (< 10 KB)
was collected and a two-tailed t-test was used to assess a difference in means. (B) Histogram of
p-values following this hypothesis test.
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Figure C.6: TF-binding motifs and eRNA localization reflect TF-binding. (A) Heatmaps
display the frequency of TF-binding motifs centered at the origin eRNAs predicted by Tfit from a
K562 GRO-cap[35] (SRR1552480) experiment. eRNAs were further separated by association with
or distal to a TF-binding peak. Motifs were gathered from the HOCOMOCO database[89] of hand
curated PSSM models. PSSM- and ChIP-matched datasets yielded 57 unique transcription factors
and 187 separate peak files. (B) The distribution of estimated RNAP footprint size (distance be-
tween forward and reverse strand peaks) for Tfit predicted eRNAs (K562). Refer to Supplementary
Note C.4.3 for discussion on the maximum likelihood estimation of RNAP footprint. (C) The co-
association of motif with eRNA origin is elevated at bound sites. X-axis: the MD-score computed
from eRNAs that are not bound, y-axis: the MD-score computed from TF-bound eRNAs.
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Figure C.7: eRNA GC content bias. eRNAs were predicted by Tfit from a K562 GRO-cap[35]
(SRR1552480) experiment and sequence from the hg19 human genome build was collected within
a 3KB window centered at eRNA origins. (A) Background expectation ACGT was computed
from the entire hg19 genome yielding 24.19%, 25.72%, 24.31%, 25.76% for A,C,T,G nucleotides
respectively. (B) 109 3KB sequences were simulated from the empirical ACGT frequency. Column
panels show the distribution of the location of significant PSSM matches < 10−7 within simulated
data for three demonstrative transcription factors: SP1, ATF3 and MNX1. Adjacent to each motif
distribution, the associated PSSM in terms of information content (bits).
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Figure C.8: MD-scores display wide variability across all publicly available nascent
transcript datasets. Sites of bidirectional transcription were profiled by Tfit across all nascent
transcript datasets allowing computation of the 641 (HOCOMOCO) MD-scores. (A) Each row
is a motif model and each column represents the frequency of that MD-score across all nascent
transcript datasets. For display and comparison, MD-scores were centered by the mean and scaled
by the standard deviation. (B) Each row represents a motif model and each column represents
an experiment. Heat indicates higher MD-scores (relative to the mean). Rows and Columns were
separately sorted by hierarchical clustering.
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Figure C.9: No significant differences in MD-scores between biological replicates. Ex-
periments annotated as biological replicate pairs: (SRR1105738, SRR1105739), (SRR1015589,
SRR1015590), (SRR653425, SRR653426) were used to study differences in MD-scores for the
Nutlin-3a[3], TNFα[106] and estradiol[67], respectively. Y-axis indicates the negative log10 p-value
(two-tailed proportion test) in MD-score change. x-axis provides the change in MD-score.

Figure C.10: No significant differences in MD-scores when considering only promoter
associated bidirectional transcripts. Experiments annotated as treatment/control pairs:
(SRR1105737, SRR1105739), (SRR1015583, SRR1015589), (SRR653421, SRR653425) were used
to study differences in MD-scores following treatment with Nutlin-3a, TNFα and estradiol for the
Nutlin-3a[3], TNFα[106] and estradiol[67] respectively. MD-scores were computed over promoter
associated bidirectional transcripts. Y-axis indicates a the negative log10 p-value (two-tailed pro-
portion test) in MD-score change (x-axis).
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Figure C.11: Treatment-unique eRNAs are enriched for specific TF-binding motifs.
Treatment-specific eRNAs were isolated from experiments annotated as treatment/control pairs:
(SRR1105738, SRR1105739), (SRR1015589, SRR1015590), (SRR653425, SRR653426) for Nutlin-
3a[3], TNFα[106] and estradiol[67] respectively. A treatment-unique eRNA is considered if the
eRNA origin is not within 1500 base-pairs of control-present eRNA. A treatment-unique eRNA is
considered associated with a motif if the motif center is within 150 base pairs of the eRNA origin.
Significance of motif over representation is assessed via a one-tailed hypergeometric distribution.
Cell color is proportional to log10 of the p-value where ligher color indicates greater significance.

Figure C.12: Cell type influences MD-score similarity. MD-scores were computed for all
human nascent transcript datasets. (A) Distance matrix where each cell’s heat is proportional to the
number of significantly different MD-scores (p(∆MDS 6= 0) < 10−6). Rows and Columns are sorted
by Ward hierarchical clustering via euclidean distance metric. (B) Dimensionality reduction by t-
Distributed Stochastic Neighbor Embedding (TSNE) of the distance matrix in panel A. Therefore,
a point represents a dataset. Color is by publication annotated cell-type.
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Figure C.13: Fewer MD-scores are significantly different within similar than across
different cell types. Each untreated nascent transcript dataset (n = 158) was independently
compared and assessed for significant changes in MD-scores (possible comparisons = 12403). (A)
each cell indicates the average number of significantly altered MD-scores (p-value< 10−6) between
any two experiments that are annotated as the associated cell type. (B) The distribution of the
number of significantly different MD-scores grouped by comparison type: same (e.g. ESC to ESC)
or different (e.g. HeLa vs LnCAP) cell type. Hypothesis testing on the means of these distributions
was performed by the standard t-test. Specific to panel (B), comparisons were only made if the
datasets were of different publications.
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Supplementary Table C.1: ENCODE identifiers for K562 TF-binding peak and chromatin
modification peak data utilized

Each line corresponds to a distinct ChIP-seq dataset profiled by the ENCODE consortium in K562
cells. Within this comma separated file there are three columns: ENCODE ID, common name,
peak total. ENCODE ID provides the unique ENCODE identifier (e.g. ENCFF001WBD is a
DNase MACS peak bed file). common name which is, in general, the antibody used for the ChIP
experiment, otherwise DNase; And, peak total which provides the total number of peaks within
that experiment. This description corresponds to the Supplementary Table ENCODE DATA.csv
associated with Enhancer RNA Expression Predicts Transcription Factor Activity by Azofeifa et
al.

Supplementary Table C.2: Cell Type Invariant TF-binding sites and eRNA profiles

This description corresponds to the Supplementary Table STa-
ble to 2D PreservedTFBindingOverlapStats.csv associated with Enhancer RNA Expression
Predicts Transcription Factor Activity by Azofeifa et al. Each line within this comma separated
file corresponds to a distinct comparison made in main Figure 2D: TF-binding peaks profiled
by ChIP/MACS in two different cell types and their association with eRNAs. In this way,
there are 12 fields: TF Name, ENC1, ENC2, cell-type 1, cell-type 2,ct1 total,ct2 total,Overlap
Total,#[00],#[01],#[10],#[11]. TF Name is simply the antibody, ENC1 and ENC2 refer to the
ENCODE ID for the MACS peaks profiled in two different cell types, cell-type 1 and cell-type 2
give the name of the cell type. ct1 total and ct2 total provide the total number of non-promoter
associated MACS peak calls. Overlap total provides the number of cell type invariant TF-binding
peaks. Finally, #[00] indicates the number of ct-invariant binding events that lacked a bidirectional
transcript in both cases. In following with this logic, #[01], #[10], and #[11] provide the number
of ct-invariant binding peaks where an eRNA was only in ct2, only in ct1 or in both respectively.
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Supplementary Table C.3: Nascent transcript Data set usage in pairwise comparisons

The purpose of this table is just to outline the SRA# datasets utlized in motif distribution com-
parisons within, between pairs or across all datasets. Specific to Figures 4A-C, Group A and Group
B refer to control and treatment. Figures 5B-C these refer to separate cell types

Figure Number Group A Group B

4A SRR1105737 SRR1105739

4B SRR1015583 SRR1015587

4C SRR653421 SRR653425

4D SRR935093 SRR935093 (none)
SRR935097 (2 minutes)
SRR935101 (5 minutes)
SRR935105 (12.5 minutes)
SRR935109 (25 minutes)
SRR935113 (50 minutes)

4E SRR930649(DMSO;1 hour) SRR930659 (KLA;1 hour)
SRR930653(DMSO;6 hour) SRR930663 (KLA;6 hour)
SRR930655(DMSO;12 hour) SRR930665 (KLA;12 hour)
SRR930657(DMSO;24 hour) SRR930667 (KLA;24 hour)

5A SRR1145801 SRR1145801 (hESC)
SRR1145808 (endoderm)
SRR1145815 (primitive gut tube)
SRR1145822 (posterior foregut)
SRR1145829 (pancreatic endoderm)

5B SRR1552482 SRR1552480
SRR1552483 SRR1552481
SRR1552485 SRR1554311

5C SRR639050 SRR1041870
SRR014286 SRR1041871

SRR408117
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Supplementary Table C.4: Cell Type and TF association table

This description corresponds to the Supplementary Table celltype tf association.csv associated with
Enhancer RNA Expression Predicts Transcription Factor Activity by Azofeifa et al. Each line
within this comma separated value file corresponds to a TF/cell-type comparison. This file contains
7 fields: motif,ct,bin p,bin n,obs,pvalue,ENR. motif and ct refer to the motif model and cell type
name respectively. bin p refers to the number of times that motif model was differently elevated in
a dataset comparison divided by the total number of comparisons (Note: if there are 491 human
datasets then there are 491 choose 2 or 120,295 possible comparisons). bin n refers to the number
of dataset comparisons associated with that cell type. pvalue results from a binomial test. ENR
refers to the random expectation (bin p·bin n) over the actual cell type and motif count.

Supplementary Table C.5: Conditions, Cell type and SRA Dataset Table

This description corresponds to the Supplementary Table conditions table.csv associated with En-
hancer RNA Expression Predicts Transcription Factor Activity by Azofeifa et al. This study an-
alyzed 771 nascent transcript datasets which span different organisms, cell types, treatments and
conditions. To this end, we provide a meta table .csv format where each row corresponds to some
nascent transcript dataset. The columns in this table proceed in this order: SRAnumber, organ-
ism, tissue, general celltype, specific celltype, treatment code, treated or like treated, repnumber,
keyword, exptype, mapped reads, total reads, percent mapped, TSS, bidirectionals. Hopefully evi-
dent from the column identifier, SRAnumber provides the unique GEO identifier which was queried
to pull down the original fastq files. Terms such as tissue, general celltype, specific celltype and
treatment code were populated by reviewing the publication associated with GEO SRA number.
Fields such as mapped reads, total reads and percent mapped refer to quality metrics output from
running bowtie2. Finally bidirectionals refer to the total number of bidirectional origins predicted
by Tfit and TSS refers the proportion of those associated with a transcription start site (µ < 1500
of RefSeq TSS annotation)

Supplementary Table C.6: Tfit bidirectional prediction table

This description corresponds to supplementary tables labeled as SRA#.csv within the tar ball
“tfit predictions” associated with Enhancer RNA Expression Predicts Transcription Factor Activ-
ity by Azofeifa et al. These tables are comma separated files generated for each dataset in the
Supplementary Table C.5 with four columns: chrom, start, stop, tss. The field chrom refers to the
chromosome location of the bidirectional origin, the start and stop refer to the genomic location on
that chromosome and tss will either return 1 or 0 depending on whether that bidirectional origin
overlapped (µ < 1500) a RefSeq transcriptional start site annotation. In this way, the set of eRNAs
are those bidirectionals where tss = 0.

Supplementary Table C.7: Sites of TF-binding Motifs

This description corresponds to supplementary tables labeled as motif model.bed within the tar ball
labeled “motif models” associated with Enhancer RNA Expression Predicts Transcription Factor
Activity by Azofeifa et al. At the time of this publication, there exists 641 HOCOMOCO motif
models. The genome was scanned for these nucleotide sites (as described in Supplementary Note
C.6) and significant hits are represented in bed file format. Files are named according to the unique
HOCOMOCO motif model identifier.
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Supplementary Table C.8: Motif Displacement Histograms

This description corresponds to Supplementary tables labeled as SRA#.csv within the tar ball name
“Motif Displacements” associated with Enhancer RNA Expression Predicts Transcription Factor
Activity by Azofeifa et al. For each dataset in the conditions table, there exists a comma separated
file where the first column refers to motif model ID from HOCOMOCO, the second column refers
to whether or not this motif displacement distribution was computed using tss associated or non-tss
associated Tfit bidirectional predictions. The final 3001 columns provide the position away from
eRNA origin and the number of motifs observed at that position. This constitutes the empirically
observed motif displacements histogram for the specified motif.
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